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Exp. 4, Part 2

 

Converter Transfer Functions

 

The engineering design process is comprised of several major steps:

 

1.

 

Specifications and other design goals

 

 are defined.

2.

 

A circuit is proposed

 

. This is a creative process that draws on the physical insight and experience of the
engineer.

3.

 

The circuit is modeled

 

. The converter power stage is modeled as described in Chapter 7. Components and
other portions of the system are modeled as appropriate, often with vendor-supplied data.

4.

 

Design-oriented analysis 

 

of the circuit is performed. This involves development of equations that allow
element values to be chosen such that specifications and design goals are met. In addition, it may be neces-
sary for the engineer to gain additional understanding and physical insight into the circuit behavior, so that
the design can be improved by adding elements to the circuit or by changing circuit connections.

5.

 

Model verification

 

. Predictions of the model are compared to a laboratory prototype, under nominal oper-
ating conditions. The model is refined as necessary, so that the model predictions agree with laboratory
measurements.

6.

 

Worst-case analysis

 

 (or other reliability and production yield analysis) of the circuit is performed. This
involves quantitative evaluation of the model performance, to judge whether specifications are met under
all conditions. Computer simulation is well-suited to this task.

7.

 

Iteration

 

. The above steps are repeated to improve the design until the worst-case behavior meets specifi-
cations, or until the reliability and production yield are acceptably high.

 

Part 3 of this experiment is concerned with the modeling, simulation, and verification steps that are
required to design the feedback system of a switched-mode converter. 
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2.1 INTRODUCTION

 

Converter systems invariably require feedback. For example, in a typical dc–dc converter application, the
output voltage 

 

v

 

(

 

t

 

) must be kept constant, regardless of changes in the input voltage 

 

v

 

g

 

(

 

t

 

) or in the effec-
tive load resistance 

 

R

 

. This is accomplished by building a circuit that varies the converter control input
[i.e., the duty cycle 

 

d

 

(

 

t

 

)] in such a way that the output voltage 

 

v

 

(

 

t

 

) is regulated to be equal to a desired ref-
erence value 

 

v

 

ref

 

. In inverter systems, a feedback loop causes the output voltage to follow a sinusoidal
reference voltage. In modern low-harmonic rectifier systems, a control system causes the converter input
current to be proportional to the input voltage, such that the input port presents a resistive load to the ac
source. So feedback is commonly employed.

A typical dc–dc system incorporating a buck converter and feedback loop block diagram is
illustrated in Fig. 2.1. It is desired to design this feedback system in such a way that the output voltage is
accurately regulated, and is insensitive to disturbances in 

 

v

 

g

 

(

 

t

 

) or in the load current. In addition, the
feedback system should be stable, and properties such as transient overshoot, settling time, and steady-
state regulation should meet specifications.

To design the system of Fig. 2.1, we need a dynamic model of the switching converter. How do
variations in the power input voltage, the load current, or the duty cycle affect the output voltage? What
are the small-signal transfer functions? To answer these questions, we will derive an equivalent circuit
model of the converter, which predicts the dynamics introduced by the inductors and capacitors of the
converter. 

Modeling is the representation of physical phenomena by mathematical means. In engineering,
it is desired to model the important dominant behavior of a system, while neglecting other insignificant
phenomena. Simplified terminal equations of the component elements are used, and many aspects of the
system response are neglected altogether, that is, they are “unmodeled.” The resulting simplified model
yields physical insight into the system behavior, which aids the engineer in designing the system to oper-
ate in a given specified manner. Thus, the modeling process involves use of approximations to neglect
small but complicating phenomena, in an attempt to understand what is most important. Once this basic
insight is gained, it may be desirable to carefully refine the model, by accounting for some of the previ-
ously ignored phenomena. It is a fact of life that real, physical systems are complex, and their detailed
analysis can easily lead to an intractable and useless mathematical mess. Approximate models are an
important tool for gaining understanding and physical insight.

The switching ripple is small in a well-designed converter operating in continuous conduction
mode (CCM). Hence, we should ignore the switching ripple, and model only the underlying ac variations
in the converter waveforms. For example, suppose that some ac variation is introduced into the converter
duty cycle 

 

d

 

(

 

t

 

), such that

 

(2.1)

 

where 

 

D

 

 and 

 

D

 

m

 

 are constants, 

 

|

 

 

 

D

 

m

 

 

 

|

 

 

 

<

 

 

 

D

 

, and the modulation frequency 

 

ω

 

m

 

 is much smaller than the
converter switching frequency 

 

ω

 

s

 

 = 2

 

π

 

f

 

s

 

. The resulting transistor gate drive signal is illustrated in
Fig. 2.2(a), and a typical converter output voltage waveform 

 

v

 

(

 

t

 

) is illustrated in Fig. 2.2(b). The spec-
trum of 

 

v

 

(

 

t

 

) is illustrated in Fig. 2.3. This spectrum contains components at the switching frequency as
well as its harmonics and sidebands; these components are small in magnitude if the switching ripple is
small. In addition, the spectrum contains a low-frequency component at the modulation frequency 

 

ω

 

m

 

.
The magnitude and phase of this component depend not only on the duty cycle variation, but also on the
frequency response of the converter. If we neglect the switching ripple, then this low-frequency compo-

d(t) = D + Dmcosωmt
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nent remains [also illustrated in Fig. 2.2(b)]. The objective of our ac modeling efforts is to predict this
low-frequency component.

A simple method for deriving the small-signal model of CCM converters is explained here. The
switching ripples in the inductor current and capacitor voltage waveforms are removed by averaging over
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Fig. 2.1 A simple dc–dc regulator system, including a buck converter power stage and a feedback network.
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Fig. 2.2 Ac variation of the converter signals: (a) transistor gate drive signal, in which the duty cycle varies
slowly, and (b) the resulting converter output voltage waveform. Both the actual waveform v(t) (including high fre-
quency switching ripple) and its averaged, low-frequency component, 〈v(t)〉T, are illustrated.
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one switching period. Hence, the low-frequency components of the inductor and capacitor waveforms
are modeled by equations of the form

 

(2.2)

 

where 

 

〈

 

x

 

(

 

t

 

)

 

〉

 

T

 

 denotes the average of 

 

x

 

(

 

t

 

) over an interval of length 

 

T

 

s

 

:

 

(2.3)

 

So we will employ the basic approximation of removing the high-frequency switching ripple by averag-
ing over one switching period. Yet the average value is allowed to vary from one switching period to the
next, such that low-frequency variations are modeled. In effect, the “moving average” of Eq. (2.3) consti-
tutes low-pass filtering of the waveform.

Note that the principles of inductor volt-second balance and capacitor charge balance predict
that the right-hand sides of Eqs. (2.2) are zero when the converter operates in equilibrium. Equations
(2.2) describe how the inductor currents and capacitor voltages change when nonzero average inductor
voltage and capacitor current are applied over a switching period.

The averaged inductor voltage and capacitor currents of Eq. (2.2) are, in general, nonlinear
functions of the signals in the converter, and hence Eqs. (2.2) constitute a set of nonlinear differential
equations. Indeed, the spectrum in Fig. 2.3 also contains harmonics of the modulation frequency 

 

ω

 

m

 

. In
most converters, these harmonics become significant in magnitude as the modulation frequency 

 

ω

 

m

 

approaches the switching frequency 

 

ω

 

s

 

, or as the modulation amplitude 

 

D

 

m

 

 approaches the quiescent
duty cycle 

 

D

 

. Nonlinear elements are not uncommon in electrical engineering; indeed, all semiconductor
devices exhibit nonlinear behavior. To obtain a linear model that is easier to analyze, we usually con-
struct a small-signal model that has been linearized about a quiescent operating point, in which the har-
monics of the modulation or excitation frequency are neglected. As an example, Fig. 2.4 illustrates
linearization of the familiar diode 

 

i

 

–

 

v

 

 characteristic shown in Fig. 2.4(b). Suppose that the diode current

 

i

 

(

 

t

 

) has a quiescent (dc) value 

 

I

 

 and a signal component 

 

i

 

(

 

t

 

). As a result, the voltage 

 

v

 

(

 

t

 

) across the diode
has a quiescent value 

 

V

 

 and a signal component 

 

v

 

(

 

t

 

). If the signal components are small compared to the
quiescent values, 
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Fig. 2.3 Spectrum of the output voltage waveform v(t) of Fig. 2.2.
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(2.4)

 

then the relationship between 

 

v

 

(

 

t

 

) and 

 

i

 

(

 

t

 

) is approximately linear, 

 

v

 

(

 

t

 

) = 

 

r

 

D

 

i

 

(

 

t

 

). The conductance 1/

 

r

 

D

 

represents the slope of the diode characteristic, evaluated at the quiescent operating point. The small-sig-
nal equivalent circuit model of Fig. 2.4(c) describes the diode behavior for small variations around the
quiescent operating point.

An example of a nonlinear converter characteristic is the dependence of the steady-state output
voltage 

 

V 

 

of the buck-boost converter on the duty cycle 

 

D

 

, illustrated in Fig. 2.5. Suppose that the con-
verter operates with some dc output voltage, say, 

 

V

 

 = –

 

V

 

g

 

, corresponding to a quiescent duty cycle of

 

D

 

 = 0.5. Duty cycle variations 

 

d

 

 about this quiescent value will excite variations 

 

v

 

 in the output voltage.
If the magnitude of the duty cycle variation is sufficiently small, then we can compute the resulting out-
put voltage variations by linearizing the curve. The slope of the linearized characteristic in Fig. 2.5 is
chosen to be equal to the slope of the actual nonlinear characteristic at the quiescent operating point; this
slope is the dc control-to-output gain of the converter. The linearized and nonlinear characteristics are
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Fig. 2.4 Small-signal equivalent circuit modeling of the diode: (a) a nonlinear diode conducting current i; (b) lin-
earization of the diode characteristic around a quiescent operating point;  (c) a linearized small-signal model.
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approximately equal in value provided that the duty cycle variations d are sufficiently small.
Although it illustrates the process of small-signal linearization, the buck-boost example of Fig.

2.5 is oversimplified. The inductors and capacitors of the converter cause the gain to exhibit a frequency
response. To correctly predict the poles and zeroes of the small-signal transfer functions, we must linear-
ize the converter averaged differential equations, Eqs. (2.2). This is done here, using the averaged switch
modeling technique. The resulting small-signal model can be solved using conventional circuit analysis
techniques, to find the small-signal transfer functions, output impedance, and other frequency-dependent
properties. In systems such as Fig. 2.1, the equivalent circuit model of the switch network can be inserted
in place of the transistor and diode elements. When small-signal models of the other system elements
(such as the pulse-width modulator) are inserted, then a complete linearized system model is obtained.
This model can be analyzed using standard linear techniques, such as the Laplace transform, to gain
insight into the behavior and properties of the system.

 The line-to-output transfer function Gvg(s) is found by setting duty cycle variations d(s) to zero,
and then solving the model for the transfer function from vg(s) to v(s):

(2.5)

This transfer function describes how variations or disturbances in the applied input voltage vg(t) lead to
disturbances in the output voltage v(t). It is important in design of an output voltage regulator. For exam-
ple, in an off-line power supply, the converter input voltage vg(t) contains undesired even harmonics of
the ac power line voltage. The transfer function Gvg(s) is used to determine the effect of these harmonics
on the converter output voltage v(t).

The control-to-output transfer function Gvd(s) is found by setting the input voltage variations
vg(s) to zero, and then solving the equivalent circuit model for v(s) as a function of d(s):
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nal averaged-switch model, with analytical expressions for the important features labeled.

Gvg(s) =
v(s)
vg(s)

d(s) = 0



2.2 Averaged Switch Modeling 7

(2.6)

This transfer function describes how control input variations d(s) influence the output voltage v(s). In an
output voltage regulator system, Gvd(s) is a key component of the loop gain and has a significant effect on
regulator performance.

The output impedance Zout(s) is found under the conditions that vg(s) and d(s) variations are set
to zero. Zout(s) describes how variations in the load current affect the output voltage. This quantity is also
important in voltage regulator design. It may be appropriate to define Zout(s) either including or not
including the load resistance R.

The objectives of this part of the experiment are the modeling, simulation, and measurement of
Bode plots of the important transfer functions of switching converters. For example, Fig. 2.6 illustrates
the magnitude and phase plots of Gvd(s) for the buck-boost converter. Experimental measurement of
transfer functions and impedances (needed in step 4, model verification) is discussed in Section 2.5. Use
of computer simulation to plot converter transfer functions (as needed in step 6, worst-case analysis) is
covered in Appendix B.

2.2  AVERAGED SWITCH MODELING

The central idea of the averaged switch modeling approach is to find an averaged circuit model for the
switch network. The resulting averaged switch model can then be inserted into the converter circuit to
obtain a complete averaged circuit model of the converter. An important advantage of the averaged
switch modeling approach is that the same model can be used in many different converter configurations.
It is not necessary to rederive an averaged circuit model for each particular converter. Furthermore, in
many cases, the averaged switch model simplifies converter analysis and yields good intuitive under-
standing of the converter steady-state and dynamic properties.

2.2.1 Switch Networks

We first define a switch network, containing the switching devices (i.e., the transistor and diode) and no
other elements. The switch network contains two ports, where the switching elements are connected to
the remainder of the converter. No connections are assumed between the switches within the switch net-
work itself.  As a result, this switch network and its averaged model can be used to easily construct aver-
aged circuit models of many two-switch converters. It is important to note, however, that the definition of
the switch network ports is not unique. Different definitions of the switch network lead to equivalent, but
not identical, averaged switch models. The alternative forms of the averaged switch model may result in
simpler circuit models, or models that provide better physical insight. Two alternative averaged switch
models, better suited for analyses of boost and buck converters, are described in this section.

Consider the ideal boost converter of Fig. 2.7(a). The switch network contains the transistor and
the diode, with input and output ports 1 and 2. To derive the averaged switch model, we first write the
waveforms of the voltages and currents at ports 1 and 2. These switch network terminal waveforms are
shown in Fig. 2.7(b). Since i1(t) and v2(t) coincide with the converter inductor current and capacitor volt-
age, it is convenient to choose these waveforms as the “independent inputs” to the switch network. We
then treat the remaining terminal waveforms i2(t) and v1(t) as dependent quantities, to be solved for and

Gvd(s) =
v(s)
d (s)

vg(s) = 0



8 Converter Transfer Functions

expressed in terms of the independent inputs. The steps in the derivation of the averaged switch model
are illustrated in Fig. 2.8.

First, we replace the switch network with dependent voltage and current generators as illus-
trated in Fig. 2.8(b). The voltage generator v1(t) models the dependent voltage waveform at the input port
of the switch network, i.e., the transistor voltage. As illustrated in Fig. 2.7(b), v1(t) is zero when the tran-
sistor conducts, and is equal to v2(t) when the diode conducts:

(2.7)

When v1(t) is defined in this manner, the inductor voltage waveform is unchanged. Likewise, i2(t) models
the dependent current waveform at port 2 of the network, i.e., the diode current. As illustrated in
Fig. 2.7(b), i2(t) is equal to zero when the transistor conducts, and is equal to i1(t) when the diode con-
ducts:

(2.8)

With i2(t) defined in this manner, the capacitor current waveform is unchanged. Therefore, the original
converter circuit shown in Fig. 2.7(a), and the circuit obtained by replacing the switch network of
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Fig. 2.8(a) with the switch network of Fig. 2.8(b), are electrically identical. So far, no approximations
have been made. Next, we remove the switching harmonics by averaging all signals over one switching
period, as in Eq. (2.3). The results are

(2.9)

Here we have assumed that the switching ripples of the inductor current and capacitor voltage are small,
or at least linear functions of time. The averaged switch model of Fig. 2.8(c) is now obtained. This is a
large-signal, nonlinear model, which can replace the switch network in the original converter circuit, for
construction of a large-signal nonlinear circuit model of the converter. The switching harmonics have
been removed from all converter waveforms, leaving only the dc and low-frequency ac components. 

The model can be linearized by perturbing and linearizing the converter waveforms about a qui-
escent operating point, in the usual manner. Let

(2.10)

The nonlinear voltage generator at port 1 of the averaged switch network has value

(2.11)

The term v(t)d(t) is nonlinear, and is small in magnitude provided that the ac variations are much smaller
than the quiescent values. When the small-signal assumption is satisfied, this term can be neglected. The
term Vd(t) is driven by the control input, and hence can be represented by an independent voltage source.
The term D′(V + v(t)) is equal to the constant value D′ multiplied by the output voltage (V + v(t)). This
term is dependent on the output capacitor voltage; it is represented by a dependent voltage source. This
dependent source will become the primary winding of an ideal transformer.

The nonlinear current generator at the port 2 of the averaged switch network is treated in a sim-
ilar manner. Its current is

(2.12)

The term i(t)d(t) is nonlinear, and can be neglected provided that the small-signal assumption is satisfied.
The term Id(t) is driven by the control input d(t), and is represented by an independent current source.
The term D′(I + i(t)) is dependent on the inductor current (I + i(t)). This term is modeled by a dependent
current source; this source will become the secondary winding of an ideal transformer.

Upon elimination of the nonlinear terms, and replacement of the dependent generators with an
ideal D′:1 transformer, the combined dc and small-signal ac averaged switch model of Fig. 2.8(d) is
obtained. Figure 2.9 shows the complete averaged circuit model of the boost converter. 

The circuit model of Fig. 2.9 reveals that the switch network performs the functions of: (i)

v1(t) Ts
= d′(t) v2(t) Ts

i2(t) Ts
= d′(t) i1(t) Ts

vg(t) Ts
= Vg + vg(t)

d(t) = D + d (t) ⇒ d′(t) = D′ – d (t)

i(t)
Ts

= i1(t) Ts
= I + i(t)

v(t)
Ts

= v2(t) Ts
= V + v(t)

v1(t) Ts
= V1 + v1(t)

i2(t) Ts
= I2 + i 2(t)

D′ – d (t) V + v(t) = D′ V + v(t) – V d (t) – v(t)d (t)

D′ – d (t) I + i(t) = D′ I + i(t) – I d (t) – i(t)d (t)
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transformation of dc and small-signal ac voltage and current levels according to the D′:1 conversion
ratio, and (ii) introduction of ac voltage and current variations into the converter circuit, driven by the
control input d(t). This model can now be solved using conventional circuit analysis techniques such as
phasor analysis or Laplace transform analysis, to find the small-signal ac transfer functions of the con-
verter.

As a second example, we consider the CCM buck converter of Fig. 2.10, where the switch net-
work ports are defined to share a common ground terminal. The derivation of the corresponding averaged
switch model follows the same steps as in the boost example. Let us select v1(t) and i2(t) as the indepen-
dent terminal variables of the two-port switch network, since these quantities coincide with the applied
converter input voltage vg(t) and the inductor current i(t), respectively. We then need to express the aver-
aged dependent terminal waveforms 〈i1(t)〉T and 〈v2(t)〉T as functions of the control input d(t) and of
〈v1(t)〉T and 〈i2(t)〉T. Upon averaging the waveforms of Fig. 2.10(b), one obtains

(2.13)

Perturbation and linearization of Eq. (2.13) then leads to

(2.14)

An equivalent circuit corresponding to Eq. (2.14) is illustrated in Fig. 2.11(a). Replacement of the switch
network in Fig. 2.10(a) with the averaged switch model of Fig. 2.11(a) leads to the converter averaged
circuit model of Fig. 2.11(b). The circuit model of Fig. 2.11(b) reveals that the switch network performs
the functions of: (i) transformation of dc and small-signal ac voltage and current levels according to the
1:D conversion ratio, and (ii) introduction of ac voltage and current variations into the converter circuit,
driven by the control input d(t). The model is easy to solve for both dc conversion ratio and small-signal
frequency responses.

The three basic switch networks—the buck switch network, the boost switch network, and the
general two-switch network—together with the corresponding averaged switch models are shown in
Fig. 2.12. Averaged switch models can be refined to include conduction and switching losses. These
models can then be used to predict the voltages, currents, and efficiencies of nonideal converters. An
example of an averaged switch model that include losses is described in Section 2.2.2.
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2.2.2 Example: Averaged Switch Modeling of Conduction Losses

An averaged switch model can be refined to include switch conduction losses. Consider the SEPIC of
Fig. 2.13. Suppose that the transistor on-resistance is Ron  and the diode forward voltage drop VD are
approximately constant. In this example, all other conduction or switching losses are neglected. Our
objective is to derive an averaged switch model that includes conduction losses caused by the voltage
drops across Ron and VD. The waveforms of the switch network terminal currents are unchanged by addi-
tion of the loss elements, but the voltage waveforms are affected by the voltage drops across Ron and VD
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Fig. 2.12 Three basic switch networks, and their CCM dc and small-signal ac averaged switch models: (a) the
buck switch network, (b) the boost switch network, and (c) the general two-switch network.
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as shown in Fig. 2.14. We select i1(t) and v2(t) as the switch network independent inputs. The average
values of v1(t) and v2(t) can be found as follows:
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Fig. 2.13 Schematic of the SEPIC, with switch network identified.
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Fig. 2.14 The switch network terminal volt-
ages v1(t) and v2(t) for the case when the transis-
tor on-resistance is Ron and the diode forward
voltage drop is VD.
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(2.15)

(2.16)

Next, we proceed to eliminate 〈iL1(t)〉T,  〈iL2(t)〉T, 〈vC1(t)〉T, and  〈vC2(t)〉T , to write the above equations in
terms of the averaged independent terminal currents and voltages of the switch network. By combining
Eqs. (2.15) and (2.16), we obtain:

(2.17)

The currents can be expressed as:

(2.18)

Substitution of Eqs. (2.17) and (2.18) into Eq. (2.15) results in:

(2.19)

Equation (2.19) can be solved for the voltage 〈v1(t)〉T:

(2.20)

The expression for the averaged current 〈i2(t)〉T is :

(2.21)

Equations (2.20) and (2.21) constitute the averaged terminal relations of the switch network. An equiva-
lent circuit corresponding to these relationships is shown in Fig. 2.15. The generators that depend on the
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Fig. 2.15 Large-signal averaged switch model for the general two-switch network of Fig. 2.12. This model
includes conduction losses due to the transistor on-resistance Ron and the diode forward voltage drop VD. 
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transistor duty cycle d(t) are combined into an ideal transformer with the turns ratio d′(t):d(t). This part
of the model is the same as in the averaged switch model derived earlier for the switch network with
ideal switches. The elements Ron /d and VD model the conduction losses in the switch network. This is a
large-signal, nonlinear model. If desired, this model can be perturbed and linearized in the usual manner,
to obtain a small-signal ac switch model. 

The model of Fig. 2.15 is also well suited for computer simulations. As an example of this
application, consider the buck-boost converter in Fig 2.16(a). In this converter, the transistor on-resis-
tance is Ron = 50 mΩ, while the diode forward voltage drop is VD = 0.8 V. Resistor RL = 100 mΩ  models
the copper loss of the inductor. All other losses are neglected. Figure 2.16(b) shows the averaged circuit
model of the converter obtained by replacing the switch network with the averaged switch model of
Fig. 2.15. 

Let’s investigate how the converter output voltage reaches its steady-state value, starting from
zero initial conditions. A transient simulation can be used to generate converter waveforms during the
start-up transient. It is instructive to compare the responses obtained by simulation of the converter
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Fig. 2.16 Buck-boost converter example: (a) converter circuit; (b) averaged circuit model of the converter.
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switching circuit shown in Fig. 2.16(a) against the responses obtained by simulation of the averaged cir-
cuit model shown in Fig. 2.16(b). Details of how these simulations are performed can be found in
Appendix B.1. Figure 2.17 shows the start-up transient waveforms of the inductor current and the output
voltage. In the waveforms obtained by simulation of the averaged circuit model, the switching ripple is
removed, but other features of the converter transient responses match very closely the responses
obtained from the switching circuit. Simulations of averaged circuit models can be used to predict con-
verter steady-state and dynamic responses, as well as converter losses and efficiency.

2.3 TRANSFER FUNCTIONS OF SOME BASIC CCM CONVERTERS

The salient features of the line-to-output and control-to-output transfer functions of the basic buck,
boost, and buck-boost converters are summarized in Table 2.1. In each case, the control-to-output trans-
fer function is of the form

(2.22)

and the line-to-output transfer function is of the form
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Fig. 2.17 Waveforms obtained by simulation of the switching converter circuit shown in Fig. 2.16(a) and by
simulation of the averaged circuit model of Fig. 2.16(b)
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(2.23)

The boost and buck-boost converters exhibit control-to-output transfer functions containing two poles
and a right half-plane zero. The buck converter Gvg(s) exhibits two poles but no zero. The line-to-output
transfer functions of all three ideal converters contain two poles and no zeroes.

2.3.1 Physical Origins of the Right Half-Plane Zero in Converters

Figure 2.18 contains a block diagram that illustrates the behavior of the right half-plane zero. At low fre-
quencies, the gain (s/ωz) has negligible magnitude, and hence uout ≈ uin. At high frequencies, where the
magnitude of the gain (s/ωz) is much greater than 1, uout ≈ – (s/ωz)uin. The negative sign causes a phase
reversal at high frequency. The implication for the transient response is that the output initially tends in
the opposite direction of the final value.

Table 2.1 Salient features of the small-signal CCM transfer functions of some basic dc–dc converters
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Fig. 2.18 Block diagram having a right half-plane
zero transfer function, as in Eq. (2.22), with ω0 = ωz.

+
–

1

s
ωz

uout(s)uin(s)



2.3 Transfer Functions of Some Basic CCM Converters 19

The control-to-output transfer functions of the boost and buck-boost converters, Fig. 2.19,
exhibit RHP zeroes. Typical transient response waveforms for a step change in duty cycle are illustrated
in Fig. 2.20. For this example, the converter initially operates in equilibrium, at d = 0.4 and d' = 0.6.
Equilibrium inductor current iL(t), diode current iD(t), and output voltage v(t) waveforms are illustrated.
The average diode current is

(2.24)

By capacitor charge balance, this average diode current is equal to the dc load current when the converter
operates in equilibrium. At time t = t1, the duty cycle is increased to 0.6. In consequence, d' decreases to
0.4. The average diode current, given by Eq. (2.24), therefore decreases, and the output capacitor begins
to discharge. The output voltage magnitude initially decreases as illustrated.

The increased duty cycle causes the inductor current to slowly increase, and hence the average
diode current eventually exceeds its original d = 0.4 equilibrium value. The output voltage eventually
increases in magnitude, to the new equilibrium value corresponding to d = 0.6. 

Fig. 2.19 Two basic converters whose CCM control-to-output transfer functions exhibit RHP zeroes: (a) boost,
(b) buck-boost.
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The presence of a right half-plane zero tends to destabilize wide-bandwidth feedback loops,
because during a transient the output initially changes in the wrong direction. The phase margin test for
feedback loop stability is discussed in the next chapter; when a RHP zero is present, it is difficult to
obtain an adequate phase margin in conventional single-loop feedback systems having wide bandwidth.
Prediction of the right half-plane zero, and the consequent explanation of why the feedback loops con-
trolling CCM boost and buck-boost converters tend to oscillate, was one of the early successes of aver-
aged converter modeling.

2.4 AVERAGED SWITCH MODELS FOR SIMULATION

The central idea of the averaged switch modeling described in the previous sections is to identify a
switch network in the converter, and then to find an averaged circuit model. The resulting averaged
switch model can then be inserted into the converter circuit to obtain a complete model of the converter.
An important feature of the averaged switch modeling approach is that the same model can be used in
many different converter configurations; it is not necessary to rederive an averaged equivalent circuit for
each particular converter. This feature is also very convenient for construction of averaged circuit models
for simulation. A general-purpose subcircuit represents a large-signal nonlinear averaged switch model.
The converter averaged circuit for simulation is then obtained by replacing the switch network with this
subcircuit. Based on the discussion in Section 7.4, subcircuits that represent CCM averaged switch mod-

Fig. 2.20 Waveforms of the converters
of Fig. 2.19, for a step response in duty
cycle. The average diode current and out-
put voltage initially decrease, as predicted
by the RHP zero. Eventually, the inductor
current increases, causing the average
diode current and the output voltage to
increase.

t

iD(t)

〈iD(t)〉Ts

t
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t

iL(t)

d = 0.6d = 0.4
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els are described in this section, together with application examples.

2.4.1 Basic CCM Averaged Switch Model

The large-signal averaged switch model for the general two-switch network of Fig. 2.12(c) is shown in
Fig. 2.21(b). A PSpice subcircuit implementation of this model is also shown in Fig. 2.21. The subcir-
cuit has five nodes. The transistor port of the averaged switch network is connected between the nodes 1
and 2, while the diode port is comprised of nodes 3 and 4. The duty ratio d = v(5) is the control input to
the subcircuit at the node 5. The quantity v(5) is a voltage that is equal to the duty cycle, and that lies in
the range zero to one volt. Figure 2.21(c) shows the netlist of the subcircuit. The netlist consists of only
four lines of code and several comment lines (the lines starting with *). The .subckt line defines the name
(CCM1) of the subcircuit and the interface nodes. The value of the controlled voltage source Et, which
models the transistor port of the averaged switch network, is written according to Eq. (7.136):

(2.25)

Note that v(3,4) in the subcircuit of Fig. 2.21 is equal to the switch network independent input 〈v2(t)〉t.
Also, d(t) = v(5), and d′(t) = 1 – d(t) = 1 – v(5). The value of the controlled current source Gd, which
models the diode port, is computed according to:

(2.26)

The switch network independent input 〈i1(t)〉t equals the current i(Et) through the controlled voltage
source Et. The .ends line completes the subcircuit netlist. The subcircuit CCM1 is included in the model
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Fig. 2.21 Averaged switch model CCM1: (a) the gen-
eral two-switch network: (b) symbol for the averaged
switch subcircuit model; (c) PSpice netlist of the subcir-
cuit.

****************************************************************
* Subcircuit: CCM1
* Application: two-switch PWM converters
* Limitations: ideal switches, CCM only, no transformer
****************************************************************
* Parameters: none
****************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative  (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
****************************************************************
.subckt CCM1 1  2  3  4  5
Et 1 2 value={(1-v(5))*v(3,4)/v(5)}
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}
.ends
****************************************************************
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library switch.lib, which can be downloaded from the course web site.
An advantage of the subcircuit CCM1 of Fig. 2.21 is that it can be used to construct an averaged

circuit model for simulation of any two-switch PWM converter operating in continuous conduction
mode, subject to the assumptions that the switches can be considered ideal, and that the converter does
not include a step-up or step-down transformer. The subcircuit can be further refined to remove these
limitations. In converters with an isolation transformer, the right-hand side of Eqs. (2.25) and (2.26)
should be divided by the transformer turns ratio. Inclusion of switch conduction losses is discussed in the
next section.

A disadvantage of the model in Fig. 2.21 is that Eqs. (2.25) and (2.26) have a discontinuity at
duty cycle equal to zero. In applications of the subcircuit, it is necessary to restrict the duty-cycle to the
range  0 < Dmin ≤ d ≤ 1.

Following the approach of this section, subcircuits can be constructed for the large-signal aver-
aged models of the buck switch network (see Fig. 2.12(a)), and the boost switch network (see
Fig. 2.12(b)). An advantage of these models is that their defining equations do not have the discontinuity
problem at d = 0.

2.4.2 CCM Averaged Switch Model that Includes Switch Conduction Losses

Let us modify the model of Fig. 2.21 to include switch conduction losses. Figure 2.22 shows simple
device models that include transistor and diode conduction losses in the general two-switch network of
Fig. 2.21(a). The transistor is modeled as an ideal switch in series with an on-resistance Ron. The diode is
modeled as an ideal diode in series with a forward voltage drop VD and resistance RD. 

Following the same averaged switch modeling approach, we can find the following relation-
ships that describe the averaged switch model for the switch network of Fig. 2.22:
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1

2

3

45

+
–

ideal
switch

ideal
diode

VD

Ron RD

+

v1(t)

–

+

v2(t)

–

Fig. 2.22 Switch network model that
includes conduction loss elements Ron, VD and
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(2.27)

(2.28)

A subcircuit implementation of the averaged switch model described by Eqs. (2.27) and (2.28) is shown
in Fig. 2.23 The subcircuit terminal nodes are the same as in the CCM1 subcircuit: the transistor port is
between the nodes 1 and 2; the diode port is between the nodes 3 and 4; the duty ratio d = v(5) is the con-
trol input to the subcircuit at the node 5. Two controlled voltage sources in series, Er and Et, are used to
generate the port 1 (transistor) averaged voltage according to Eq. (2.27). The controlled voltage source Er
models the voltage drop across the equivalent resistance Ron/d(t) + d′(t)RD/d2(t) in Eq. (2.27). Note that
this equivalent resistance is a nonlinear function of the switch duty cycle d(t). The controlled voltage
source Et shows how the port 1 (transistor) averaged voltage depends on the port 2 (diode) averaged volt-
age. The controlled current source Gd models the averaged diode current according to Eq. (2.28). The
subcircuit CCM2 has three parameters (Ron, VD, and RD) that can be specified when the subcircuit is used
in a converter circuit. The default values of the subcircuit parameters, Ron = 0, VD = 0, and RD = 0, are
defined in the .subckt line. These values correspond to the ideal case of no conduction losses. The subcir-
cuit CCM2 is included in the model library switch.lib.

The model of Fig. 2.23 is based on the simple device models of Fig. 2.22. It is assumed that
inductor current ripples are small and that the converter operates in continuous conduction mode. Many
practical converters, however, must operate in discontinuous conduction mode at low duty cycles where
the diode forward voltage drop is comparable to or larger than the output voltage. In such cases, the
model of Fig. 2.22, which includes VD as a fixed voltage generator, gives incorrect, physically impossible
results for polarities of converter voltages and currents, losses and efficiency.
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Fig. 2.23 Subcircuit implementation of the
CCM averaged switch model that includes
conduction losses: (a) circuit symbol; (b)
PSpice netlist for the subcircuit.

**************************************************************
* MODEL: CCM2
* Application: two-switch PWM converters, includes 
*              conduction losses due to Ron, VD, RD
* Limitations: CCM only, no transformer
**************************************************************
* Parameters:
*      Ron = transistor on-resistance
*      VD = diode forward voltage drop
*      RD = diode on-resistance
**************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
**************************************************************
.subckt CCM2 1  2  3  4  5
+params: Ron=0 VD=0 RD=0
Er 1 1x value={i(Et)*(Ron+(1-v(5))*RD/v(5))/v(5)}
Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)}
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}
.ends
**************************************************************
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(b)
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2.4.3 Example: SEPIC DC Conversion Ratio and Efficiency

Let us consider an example of how the subcircuit CCM2 can be used to generate dc conversion ratio and
efficiency curves for a CCM converter. As an example, Figure 2.24 shows a SEPIC averaged circuit
model. To construct the averaged circuit model for simulation, the switch network is replaced by the sub-
circuit CCM2. In the converter netlist shown in Fig. 2.24, the Xswitch line shows how the subcircuit is con-
nected to other parts of the converter. The switch duty cycle is set by the voltage source Vc. All other
parts of the converter circuit are simply copied to the averaged circuit model. Inductor winding resis-
tances RL1 = 0.5 Ω and RL2 = 0.1 Ω are included to model copper losses of the inductors L1 and L2,
respectively. The switch conduction loss parameters are defined by the .param line in the netlist: Ron = 0,
VD = 0.8 V, RD = 0.05 Ω. Notice how these values are passed to the subcircuit CCM2 in the Xswitch line. In
this example, all other losses in the converter are neglected. A dc sweep analysis (see the .dc line in the
netlist) is set to vary the dc voltage source Vc from 0.1 V to 1 V, in 0.01 V increments, which corresponds
to varying the switch duty cycle over the range from D = 0.1 to D = 1. The range of duty cycles from zero
to 0.1 is not covered because of the model discontinuity problem at D = 0 (discussed in Section 2.4.1),
and because the model predictions for conduction losses at low duty cycles are not valid, as discussed in
Section 2.4.2. The dc sweep analysis is repeated for values of the switch on-resistance in the range from
Ron = 0 Ω to Ron = 1 Ω in 0.5 Ω increments (see the .step line in the netlist). The .lib line refers to the
switch.lib library, which contains definitions of the subcircuit CCM2 and all other subcircuit models
described in this document.

Simulation results for the dc output voltage V and the converter efficiency η are shown in
Fig. 2.25.  At low duty cycles, efficiency drops because the diode forward voltage drop is comparable to
the output voltage. At higher duty cycles, the converter currents increase, so that the conduction losses
increase. Eventually, for duty cycles approaching 1, both the output voltage and the efficiency approach
zero. Given a desired dc output voltage and efficiency, the plots in Fig. 2.25 can be used to select the
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SEPIC DC conversion ratio and efficiency

* Define parameters:
.param  Ron=0.0 VD=0.8 RD=0.05
* Analysis setup:
.dc lin Vc 0.1 1 0.01 
.step lin PARAM Ron 0 1 0.5 

* Converter netlist:
Vg 1 0 50V
L1 1 2x  800u  
RL1 2x 2 0.5
L2 0 3x 100uH
RL2 3x 3 0.1
C1 2 3 100uF
C2 4 0 100uF
Xswitch 2 0 4 3 5 CCM2 
+params: Ron={Ron} VD={VD} RD={RD}
Rload 4 0 50

* Duty cycle input:
Vc  5 0 0.5

.lib switch.lib

.probe

.end

Fig. 2.24 SEPIC simulation example.



2.4 Averaged Switch Models for Simulation 25

transistor with an appropriate value of the on-resistance.

2.4.4 Example: Transient Response of a Buck–Boost Converter

In addition to steady-state conversion characteristics, it is often of interest to investigate converter tran-
sient responses. For example, in voltage regulator designs, it is necessary to verify whether the output
voltage remains within specified limits when the load current takes a step change. As another example,
during a start-up transient when the converter is powered up, converter components can be exposed to
significantly higher stresses than in steady state. It is of interest to verify that component stresses are
within specifications or to make design modifications to reduce the stresses. In these examples, transient
simulations can be used to test for converter responses. 

Transient simulations can be performed on the converter switching circuit model or on the con-
verter averaged circuit model. As an example, let us apply these two approaches to investigate a start-up
transient response of the buck-boost converter shown in Fig. 2.26. 

Figure 2.27 shows a switching circuit model of the buck-boost converter. The inductor winding
resistance RL is included to model the inductor copper losses. The MOSFET is modeled as a voltage-con-
trolled switch Sq1 controlled by a pulsating voltage source vc. The switch .model line specifies the switch
on-resistance Ron = 50 mΩ, and the switch off-resistance Roff = 10 MΩ. The switch is on when the con-
trolling voltage vc is greater than Von = 6 V, and off when the controlling voltage vc is less than Voff = 4 V.
The pulsating source vc has the pulse amplitude equal to 10 V. The period is Ts = 1/fs = 10 µs, the rise and
fall times are tr = tf = 100 ns, and the pulse width is tp = 7.9 µs. The switch duty cycle is
D = (tp + 0.5(tr + tf))/Ts = 0.8. The built-in nonlinear Spice model is used for the diode. In the diode
.model statement, only the parameter Is is specified, to set the forward voltage drop across the diode. The
switch and the diode models used in this example are very simple. Conduction losses are modeled in a
simple manner, and details of complex device behavior during switching transitions are neglected.
Therefore, the circuit model of Fig. 2.27 cannot be used to examine switching transitions or to predict
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switching losses in the converter. Nevertheless, basic switching operation is modeled, and a transient
simulation can be used to find out how the converter waveforms evolve in time over many switching
cycles. Transient simulation parameters are defined by the .tran line: the output time step is 1 µs, the final
simulation time is 1.2 ms, the output waveforms are generated from the start of simulation at time equal
to zero, and the maximum allowed time step is 1 µs. The uic (“use initial conditions”) option tells the
simulator to start with all capacitor voltages and inductor currents equal to the specified initial values.
For example, ic=0 in the L1 line sets the initial inductor current to zero. In Spice, the default initial condi-
tions are always zero, so that ic=0 statements can be omitted. 

An averaged circuit model of the buck-boost converter is shown in Fig. 2.28. This circuit model
is obtained by replacing the switch network in the converter of Fig. 2.26 by the CCM2 subcircuit. Notice
that the circuits and the netlists of Figs. 2.27 and Fig. 2.28 are very similar. The only difference is that the
switching devices in the converter circuit of Fig. 2.27 are replaced by the CCM2 subcircuit Xswitch in
Fig. 2.28. Also, the pulsating source vc(t) in the switching circuit is replaced by a constant voltage source
vc equal to the switch duty cycle D = 0.8.

The inductor current and the capacitor voltage waveforms during the start-up transient are
shown in Fig. 2.29. For comparison, the waveforms obtained by transient simulation of the switching
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Fig. 2.26 Buck-boost converter example.
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Fig. 2.27 Buck-boost converter simulation example, switching circuit model.
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Fig. 2.28 Buck-boost converter simulation example, averaged circuit model.
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converter circuit shown in Fig. 2.27, and by simulation of the averaged circuit model of Fig. 2.28 are
shown. Switching ripples can be observed in the waveforms obtained by simulation of the switching cir-
cuit model. The converter transient response is governed by the converter natural time constants. Since
these time constants are much longer than the switching period, the converter start-up transient responses
in Fig. 2.29 take many switching cycles to reach the steady state. In the results obtained by simulation of
the averaged circuit model, the switching ripples are removed, but the low-frequency portions of the con-
verter transient responses, which are governed by the natural time constants of the converter network,
match very closely the responses obtained by simulation of the switching circuit. 

Based on the results shown in Fig. 2.29, we can see that converter components are exposed to
significantly higher current stresses during the start-up transient than during steady state operation. The
problem of excessive stresses in the start-up transient is quite typical for switching power converters.
Practical designs usually include a “soft-start” circuit, where the switch duty cycle is slowly increased
from zero to the steady-state value to reduce start-up transient stresses.

This simulation example illustrates how an averaged circuit model can be used in place of a
switching circuit model to investigate converter large-signal transient responses. An advantage of the
averaged circuit model is that transient simulations can be completed much more quickly because the
averaged model is time invariant, and the simulator does not spend time computing the details of the fast
switching transitions. This advantage can be important in simulations of larger electronic systems that
include switching power converters. Another important advantage also comes from the fact that the aver-
aged circuit model is nonlinear but time-invariant: ac simulations can be used to linearize the model and
generate small-signal frequency responses of interest. This is not possible with switching circuit models.
Examples of small-signal ac simulations can be found in the following sections.

2.4.5 Combined CCM/DCM Averaged Switch Model

The models and examples of above are all based on the assumption that the converters operate in contin-
uous conduction mode (CCM). All converters containing a diode rectifier operate in discontinuous con-
duction mode (DCM) if the load current is sufficiently low. In some cases, converters are purposely
designed to operate in DCM. It is therefore of interest to develop averaged models suitable for simulation
of converters that may operate in either CCM or DCM.

Figure 2.30 illustrates the general two-switch network, and the corresponding large-signal aver-
aged models in CCM and DCM. The CCM averaged switch model, which is derived in Section 7.4, is an
ideal transformer with d′ : d turns ratio. In DCM, the large-signal averaged switch model is a loss-free
resistor, as derived in Section 11.1. Our objective is to construct a combined CCM/DCM averaged switch
model that reduces to the model of Fig. 2.30(a) or to the model of Fig. 2.30(c) depending on the operat-
ing mode of the converter. Let us define an effective switch conversion ratio µ(t), so that the averaged
switch model in both modes has the same form as in CCM, as shown in Fig. 2.31. If the converter oper-
ates in CCM, then the switch conversion ratio µ(t) is equal to the switch duty cycle d(t),

(2.29)

If the converter operates in DCM, then the effective switch conversion ratio can be computed so that the
terminal characteristics of the averaged-switch model of Fig. 2.31 match the terminal characteristics of
the loss-free resistor model of Fig. 2.30(c). Matching the port 1 characteristics gives

µ = d
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(2.30)

which can be solved for the switch conversion ratio µ, 

(2.31)

It can be verified that matching the port 2 characteristics of the models in Figs. 2.30(c) and 2.31 gives
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exactly the same result for the effective switch conversion ratio in DCM. 
The switch conversion ratio µ(t) can be considered a generalization of the duty cycle d(t) of

CCM switch networks. Based on this approach, models and results developed for converters in CCM can
be used not only for DCM but also for other operating modes or even for other converter configurations
by simply replacing the switch duty cycle d(t) with the appropriate switch conversion ratio µ(t). For
example, if M(d) is the conversion ratio in CCM, then M(µ), with µ given by Eq. (2.31), is the conversion
ratio in DCM. The switch conversion ratio in DCM depends on the averaged terminal voltage and cur-
rent, as well as the switch duty cycle d through the effective resistance Re = 2L/d2Ts. If the converter is
completely unloaded, then the average transistor current 〈i1(t)〉T is zero, and the DCM switch conversion
ratio becomes µ = 1. As a result, the dc output voltage attains the maximum possible value V = VgM(1).

To construct a combined CCM/DCM averaged switch model based on the general averaged
switch model of Fig. 2.31, it is necessary to specify which of the two expressions for the switch conver-
sion ratio to use: Eq. (2.29), which is valid in CCM, or Eq. (2.31), which is valid in DCM. At the CCM/
DCM boundary, these two expressions must give the same result, µ = d. If the load current decreases fur-
ther, the converter operates in DCM, the average switch current 〈i1(t)〉T decreases, and the DCM switch
conversion ratio in Eq. (2.31) becomes greater than the switch duty cycle d. We conclude that the correct
value of the switch conversion ratio, which takes into account operation in CCM or DCM, is the larger of
the two values computed using Eq. (2.29) and Eq. (2.31).

Figure 2.32 shows an implementation of the combined CCM/DCM model as a PSpice subcir-
cuit CCM-DCM1. This subcircuit has the same five interface nodes as the subcircuits CCM1 and CCM2
of Section B.1. The controlled sources Et and Gd model the port 1 (transistor) and port 2 (diode) averaged
characteristics, as shown in Fig. 2.31. The switch conversion ratio µ is equal to the voltage v(u) at the
subcircuit node u. The controlled voltage source Eu computes the switch conversion ratio as the greater
of the two values obtained from Eqs. (2.29) and (2.31). The controlled current source Ga, the zero-value
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*****************************************************************
* MODEL: CCM-DCM1
* Application: two-switch PWM converters, CCM or DCM
* Limitations: ideal switches, no transformer
*****************************************************************
* Parameters:
*      L = equivalent inductance for DCM
*      fs = switching frequency
*****************************************************************
* Nodes:
* 1: transistor positive (drain for an n-channel MOS)
* 2: transistor negative  (source for an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
*****************************************************************
.subckt CCM-DCM1 1  2  3  4  5
+ params: L=100u fs=1E5
Et 1 2 value={(1-v(u))*v(3,4)/v(u)}
Gd 4 3 value={(1-v(u))*i(Et)/v(u)}
Ga 0 a value={MAX(i(Et),0)}
Va a b
Ra b 0 1k
Eu u 0 table {MAX(v(5),
+ v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4)))} (0 0) (1 1)
.ends
*****************************************************************

Fig. 2.32 Implementation of the com-
bined CCM/DCM averaged switch model.
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voltage source Va, and the resistor Ra form an auxiliary circuit to ensure that the solution found by the
simulator has the transistor and the diode currents with correct polarities, 〈i1(t)〉t > 0, 〈i2(t)〉t > 0. The
subcircuit parameters are the inductance L relevant for CCM/DCM operation, and the switching fre-
quency fs. The default values in the subcircuit are arbitrarily set to L = 100 µH and fs = 100 kHz.

The PSpice subcircuit CCM-DCM1 of Fig. 2.32 can be used for dc, ac, and transient simula-
tions of PWM converters containing a transistor switch and a diode switch. This subcircuit is included in
the model library switch.lib. It can be modified further for use in converters with isolation transformer.

2.4.6 Example: SEPIC Frequency Responses

As an example, Fig. 2.33 shows a SEPIC circuit and the averaged circuit model obtained by replacing the
switch network with the CCM-DCM1 subcircuit of Fig. 2.32. A part of the circuit netlist is included in
Fig. 2.33. The connections and the parameters of the CCM-DCM1 subcircuit are defined by the Xswitch
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Fig. 2.33 SEPIC simulation example: (a) converter circuit, (b) averaged circuit model for simulation.

(a)

(b)

SEPIC frequency response
... other parts of the netlist omitted ...
* duty cycle input:
vc 5 0 dc 0.4 ac 1
* subcircuit
Xswitch 2 0 4 3 5 CCM-DCM1
+ PARAMS: L=83.3uH fs=100kHz
.lib switch.lib
* analysis setup:
.ac dec 201 5 50kHz
.end
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line. In the SEPIC, the inductance parameter L = 83.3 µH is equal to the parallel combination of L1 and
L2. The voltage source vc sets the quiescent value of the duty cycle to D = 0.4, and the small-signal ac
value to d = 1. Ac simulation is performed on a linearized circuit model, so that amplitudes of all small-
signal ac waveforms are directly proportional to the amplitude of the ac input, regardless of the input ac
amplitude value. For example, the control-to-output transfer function is Gvd = v/d, where v = v(4) in the
circuit of Fig. 2.33(b). We can set the input ac amplitude to 1, so that the control-to-output transfer func-
tion Gvd can be measured directly as v(5). This setup is just for convenience in finding small-signal fre-
quency responses by simulation. For measurements of converter transfer functions in an experimental
circuit (see Section 8.5), the actual amplitude of the small-signal ac variation d would be set to a fraction
of the quiescent duty cycle D. Parameters of the ac simulation are set by the .ac line in the netlist: the sig-
nal frequency is swept from the minimum frequency of 5 Hz to the maximum frequency of 50 kHz in
201 points per decade.

Figure 2.34 shows magnitude and phase responses of the control-to-output transfer function
obtained by ac simulations for two different values of the load resistance: R = 40 Ω, for which the con-
verter operates in CCM, and R = 50 Ω, for which the converter operates in DCM. For these two operating
points, the quiescent (dc) voltages and currents in the circuit are nearly the same. Nevertheless, the fre-
quency responses are qualitatively very different in the two operating modes. In CCM, the converter
exhibits a fourth-order response with two pairs of high-Q complex-conjugate poles and a pair of com-
plex-conjugate zeros. Another RHP (right-half plane) zero can be observed at frequencies approaching
50 kHz. In DCM, there is a dominant low-frequency pole followed by a pair of complex-conjugate poles
and a pair of complex-conjugate zeros. The frequencies of the complex poles and zeros are very close in
value. A high-frequency pole and a RHP zero contribute additional phase lag at higher frequencies. 

In the design of a feedback controller around a converter that may operate in CCM or in DCM,
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Fig. 2.34 Magnitude and phase responses of the control-to-output transfer function obtained by simulation of the
SEPIC example, for two values of the load resistance. For R = 50 Ω, the converter operates in DCM (solid lines), and
for R = 40 Ω, the converter operates in CCM (dotted lines).
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one should take into account that the crossover frequency, the phase margin, and the closed-loop
responses can be substantially different depending on the operating mode. This point is illustrated by the
example of the next section.

2.4.7 Example: Loop Gain and Closed-Loop Responses of a Buck Voltage Regulator

A controller design for a buck converter example is discussed in Section 9.5.4. The converter and the
block diagram of the controller are shown in Fig. 9.22. This converter system is designed to regulate the
dc output voltage at V = 15 V for the load current up to 5 A. Let us test this design by simulation. An
averaged circuit model of a practical realization of the buck voltage regulator described in Section 9.5.4
is shown in Fig. 2.35. The MOSFET and the diode switch are replaced by the averaged switch model
implemented as the CCM-DCM1 subcircuit. The pulse-width modulator with VM = 4 V is modeled
according to the discussion in Section 7.6 as a dependent voltage source Epwm controlled by the PWM
input voltage vx. The value of Epwm is equal to 1/VM = 0.25 times the PWM input voltage vx, with a limit
for the minimum value set to 0.1 V, and a limit for the maximum value set to 0.9 V. The output of the
pulse-width modulator is the control duty-cycle input to the CCM-DCM1 averaged switch subcircuit.
Given the specified limits for Epwm, the switch duty cycle d(t) can take values in the range:

(2.32)

where Dmin = 0.1, and Dmax = 0.9. Practical PWM integrated circuits often have a limit Dmax < 1 for the
maximum possible duty cycle. The voltage sensor and the compensator are implemented around an op-
amp LM324. With very large loop gain in the system, the steady-state error voltage is approximately
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zero, i.e., the dc voltages at the plus and the minus inputs of the op-amp are almost the same,

(2.33)

As a result, the quiescent (dc) output voltage V is set by the reference voltage vref and the voltage divider
comprised of R1, R2, R4:

(2.34)

By setting the ac reference voltage vref to zero, the combined transfer function of the voltage sensor and
the compensator can be found as:

(2.35)

This transfer function can be written in factored pole-zero form as

(2.36)

where

(2.37)

(2.38)

(2.39)

and

(2.40)

The design described in Section 9.5.4 resulted in the following values for the gain and the corner fre-
quencies:

(2.41)

Eqs. (2.34) and (2.37) to (2.41) can be used to select the circuit parameter values. Let us (somewhat arbi-
trarily) choose C2 = 1.1 nF. Then, from Eq. (2.38), we have R2 = 85 kΩ, and Eq. (2.40) yields
R1 = 11 kΩ. From Eq. (2.37) we obtain R3 = 120 kΩ, and Eq. (2.39) gives C3 = 2.7 kΩ. Finally,
R4 = 47 kΩ is found from Eq. (2.34). The voltage regulator design can now be tested by simulations of
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the circuit in Fig. 2.35.
Loop gains can be obtained by simulation through injection techniques. An ac voltage source vz

is injected between the compensator output and the PWM input. This is a good injection point since the
output impedance of the compensator built around the op-amp is small, and the PWM input impedance is
very large (infinity in the circuit model of Fig. 2.35). With the ac source amplitude set (arbitrarily) to 1,
and no other ac sources in the circuit, ac simulations are performed to find the loop gain as

(2.42)

To perform ac analysis, the simulator first solves for the quiescent (dc) operating point. The circuit is
then linearized at this operating point, and small-signal frequency responses are computed for the speci-
fied range of signal frequencies. Solving for the quiescent operating point involves numerical solution of
a system of nonlinear equations. In some cases, the numerical solution does not converge and the simula-
tion is aborted with an error message. In particular, convergence problems often occur in circuits with
feedback, especially when the loop gain at dc is very large. This is the case in the circuit of Fig. 2.35. To
help convergence when the simulator is solving for the quiescent operating point, one can specify
approximate or expected values of node voltages using the .nodeset line as shown in Fig. 2.35. In this
case, we know by design that the quiescent output voltage is close to 15 V (v(3) = 15), that the negative
input of the op-amp is very close to the reference (v(5) = 5), and that the quiescent duty cycle is approxi-
mately D = V/Vg =0.536, so that v(8) = 0.536 V. Given these approximate node voltages, the numerical
solution converges, and the following quiescent operating points are found by the simulator for two val-
ues of the load resistance R:

(2.43)

(2.44)

For the nominal load resistance R = 3 Ω, the converter operates in CCM, so that D = V/Vg. For R = 25 Ω,
the same dc output voltage is obtained for a lower value of the quiescent duty cycle, which means that the
converter operates in DCM.

The magnitude and phase responses of the loop gain found for the operating points given by
Eqs. (2.43) and (2.44) are shown in Fig. 2.36. For R = 3 Ω, the crossover frequency is fc = 5.3 kHz, and
the phase margin is φM = 47˚, very close to the values (fc = 5 kHz, φM = 52˚) that we designed for in
Section 9.5.4. At light load, for R = 25 Ω, the loop gain responses are considerably different because the
converter operates in DCM. The crossover frequency drops to fc = 390 Hz, while the phase margin is
φM = 55˚. 

The magnitude responses of the line-to-output transfer function are shown in Fig. 2.37, again
for two values of the load resistance, R = 3 Ω and R = 25 Ω. The open-loop responses are obtained by
braking the feedback loop at node 8, and setting the dc voltage at this node to the quiescent value D of
the duty cycle. For R = 3 Ω, the open-loop and closed-loop responses can be compared to the theoretical
plots shown in Fig. 9.32. At 100 Hz, the closed-loop magnitude response is 0.012 ⇒ – 38 dB. A 1 V,
100 Hz variation in vg(t) would induce a 12 mV variation in the output voltage v(t). For R = 25 Ω, the
closed loop magnitude response is 0.02 ⇒ – 34 dB, which means that the 1 V, 100 Hz variation in vg(t)
would induce a 20 mV variation in the output voltage. Notice how the regulator performance in terms of
rejecting the input voltage disturbance is significantly worse at light load than at the nominal load.

A test of the transient response to a step change in load is shown in Fig. 2.38. The load current
is initially equal to 1.5 A, and increases to iLOAD = 5 A at t = 0.1 ms. When the converter is operated in
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vy

vx
= –

v(6)
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R = 3 Ω, v(3) = 15.2 V, v(5) = 5.0 V, v(7) = 2.173 V, v(8) = 0.543 V, D = 0.543

R = 25 Ω, v(3) = 15.2 V, v(5) = 5.0 V, v(7) = 2.033 V, v(8) = 0.508 V, D = 0.508
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open loop at constant duty cycle, the response is governed by the natural time constants of the converter
network. A large undershoot and long lightly-damped oscillations can be observed in the output voltage.
With the feedback loop closed, the controller dynamically adjusts the duty cycle d(t) trying to maintain
the output voltage constant. The output voltage drops by about 0.2 V, and it returns to the regulated value
after a short, well-damped transient.

The voltage regulator example of Fig. 2.35 illustrates how the performance can vary signifi-
cantly if the regulator is expected to supply a wide range of loads. In practice, further tests would also be
performed to account for expected ranges of input voltages, and variations in component parameter val-
ues. Design iterations may be necessary to ensure that performance specifications are met under worst
case conditions.
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2.5 MEASUREMENT OF AC TRANSFER FUNCTIONS AND IMPEDANCES

It is good engineering practice to measure the transfer functions of prototype converters and converter
systems. Such an exercise can verify that the system has been correctly modeled and designed. Also, it is
often useful to characterize individual circuit elements through measurement of their terminal imped-
ances.

Small-signal ac magnitude and phase measurements can be made using an instrument known as
a network analyzer, or frequency response analyzer. The key inputs and outputs of a basic network ana-
lyzer are illustrated in Fig. 2.39. The network analyzer provides a sinusoidal output voltage vz of con-
trollable amplitude and frequency. This signal can be injected into the system to be measured, at any
desired location. The network analyzer also has two (or more) inputs, vx and vy . The return electrodes of
vz, vy, and vx are internally connected to earth ground. The network analyzer performs the function of a
narrowband tracking voltmeter: it measures the components of vx and vy at the injection frequency, and
displays the magnitude and phase of the quantity vy/vx. The narrowband tracking voltmeter feature is
essential for switching converter measurements; otherwise, switching ripple and noise corrupt the
desired sinusoidal signals and make accurate measurements impossible. Modern network analyzers can
automatically sweep the frequency of the injection source vz to generate magnitude and phase Bode plots
of the transfer function vy/vx.

A typical test setup for measuring the transfer function of an amplifier is illustrated in
Fig. 2.40. A potentiometer, connected between a dc supply voltage VCC and ground, is used to bias the
amplifier input to attain the correct quiescent operating point. The injection source voltage vz is coupled
to the amplifier input terminals via a dc blocking capacitor. This blocking capacitor prevents the injection
voltage source from upsetting the dc bias. The network analyzer inputs vx and vy are connected to the
input and output terminals of the amplifier. Hence, the measured transfer function is
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Fig. 2.38 Load transient response of the buck voltage regulator example.



38 Converter Transfer Functions

(2.45)

Note that the blocking capacitance, bias potentiometer, and vz amplitude have no effect on the measured
transfer function

An impedance

(2.46)

can be measured by treating the impedance as a transfer function from current to voltage. For example,
measurement of the output impedance of an amplifier is illustrated in Fig. 2.41. The quiescent operating
condition is again established by a potentiometer which biases the amplifier input. The injection source
vz is coupled to the amplifier output through a dc blocking capacitor. The injection source voltage vz
excites a current iout in impedance Zs. This current flows into the output of the amplifier, and excites a
voltage across the amplifier output impedance:

(2.47)

A current probe is used to measure iout. The current probe produces a voltage proportional to iout; this
voltage is connected to the network analyzer input vx. A voltage probe is used to measure the amplifier
output voltage vy . The network analyzer displays the transfer function vy/vx, which is proportional to Zout.
Note that the value of Zs and the amplitude of vz do not affect the measurement of Zout.

In power applications, it is sometimes necessary to measure impedances that are very small in
magnitude. Grounding problems cause the test setup of Fig. 2.41 to fail in such cases. The reason is

Network Analyzer

Injection source Measured inputs

vy

Magnitude
vz

Frequency
vz

Output
vz

+ –

Input

vx

Input
+ – + –

vy

vx

vy

vx

Data

17.3 dB

– 134.7˚

Data bus
to computer

Fig. 2.39 Key features and functions of a network analyzer: sinusoidal source of controllable amplitude and fre-
quency, two inputs, and determination of relative magnitude and phase of the input components at the injection fre-
quency.
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illustrated in Fig. 2.42(a). Since the return connections of the injection source vz and the analyzer input vy
are both connected to earth ground, the injected current iout can return to the source through the return
connections of either the injection source or the voltage probe. In practice, iout divides between the two
paths according to their relative impedances. Hence, a significant current (1 – k) iout flows through the
return connection of the voltage probe. If the voltage probe return connection has some total contact and
wiring impedance Zprobe, then the current induces a voltage drop (1 – k)ioutZprobe in the voltage probe wir-
ing, as illustrated in Fig. 2.42(a). Hence, the network analyzer does not correctly measure the voltage
drop across the impedance Z. If the internal ground connections of the network analyzer have negligible
impedance, then the network analyzer will display the following impedance:

(2.48)

Here, Zrz is the impedance of the injection source return connection. So to obtain an accurate measure-
ment, the following condition must be satisfied:

(2.49)

A typical lower limit on || Z || is a few tens or hundreds of milliohms.
An improved test setup for measurement of small impedances is illustrated in Fig. 2.42(b). An

isolation transformer is inserted between the injection source and the dc blocking capacitor. The return
connections of the voltage probe and injection source are no longer in parallel, and the injected current
iout must now return entirely through the injection source return connection. An added benefit is that the
transformer turns ratio n can be increased, to better match the injection source impedance to the imped-
ance under test. Note that the impedances of the transformer, of the blocking capacitor, and of the probe
and injection source return connections, do not affect the measurement. Much smaller impedances can
therefore be measured using this improved approach.

Z + (1 – k)Z probe = Z + Z probe||Zrz

Z > Z probe||Zrz
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Fig. 2.42 Measurement of a small impedance Z(s): (a) current flowing in the return connection of the voltage
probe induces a voltage drop that corrupts the measurement; (b) an improved experiment, incorporating isolation of
the injection source.
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