Transportation Electrification

Motivation

Improve efficiency: reduce energy consumption

Displace petroleum as primary energy source

Reduce impact on environment

Reduce cost

US Energy Information Administration:

* Transportation accounts for 28% of
total U.S. energy use

* Transportation accounts for 33% of
CO, emissions

* Petroleum comprises 90% of US
transportation energy use
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Example: US06 driving cycle
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Example: US06 driving cycle
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Average power and energy
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ICE vs ED —w
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“Full Acceleration”, proactive Magazine, Oct. 2012
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Conventional Vs. Electric Vehicle

(Commuter Sedan comparison)

Tank + Internal Combustion Electric Vehicle (EV) Battery +
Engine Inverter + AC machine
Regen'eratlve NO VES
braking
Tank-to-wheel ~20% ~ 85%
efficiency 1.2 kWh/mile, 28 mpg 0.17 kWh/mile, 200 mpg equiv.
Cost 12 ¢/mile [$3.50/gallon] 2 ¢/mile [$0.12/kWh]

€O, emissions ~ (300, 350) g CO,/mile (0,~120) g CO,/mile
(tailpipe, total) [current U.S. electricity mix]

Energy Costs (10-yr,

15k mi/yr) $18,000 $3,000
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Energy and Power Density of Storage

2016 Camaro  Mazda RX-8
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Conventional Vs. Electric Vehicle

(Commuter Sedan comparison)

Tank + Internal Combustion Electric Vehicle (EV) Battery +
Engine Inverter + AC machine
(Ford Focus ST) (Ford Focus Electric)
Purchase Price $24,495 $39,995
Significant $5,000 $13,500
Maintenance (Major Engine Repair) (Battery Pack Replacement)
Range > 350 mi <100 mi
Curb Weight 3,000 Ib 3,700 Ib
Energy storage Gasoline energy content LiFePO, battery
12.3 kWh/kg, 36.4 kWh/gallon 0.1 kWh/kg, 0.8 kWh/gallon
Refueling 5 gallons/minute Level | (120Vac): 1.5 kW, <8 miles/hour
11 MW, 140 miles/minute Level Il (240Vac): 6 kW, <32 miles/hour

Level lll (DC): 100 kW, <9 miles/minute
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EV Everywhere Grand Challenge

Advancements needed for an electric drive system to support meeting EV Everywhere targets

ST
e J >

2012 Electric Drive System 2022 Electric Drive System
$30/kW, 1.1 kW/kg, 2.6 KW/L Today $8/kW, 1.4 kW/kg, 4.0 KW/L
90% system efficiency $12/kW 94% system efficiency
1.2 kW/kg

3.5 kW/I

>93% efficiency
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Power Electronics in Electric Vehicles
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BEV Architecture
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Example: Tesla Roadster
e 215 kW electric drive ED1 (sport model)
* 53 kWh Li-ion battery
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Series HEV Architecture

In a PHEV, a (larger) battery can be
charged from the electric power grid
—
v F,
L]
n T n T
1 1 V 2 2 lln T
- DC . ( w v v
ICE Electric 3-phase ~3—phase Electric |
Fuel motor/ | inverter/ inverter/ ——  motor/ L
’ é generator [ rectifier 1 rectifier 2 | generator % Transmission
- — 2 -
EDI Energy ED2
Battery charging (alternator) — sto rage Traction
> > Wheels
ICE starting Regenerative braking (radiusr )
> v

Example: Chevy Volt, a PHEV with a drive-train
based on the series architecture:

* 62 kW (83 hp, 1.4 L) ICE

* 55 kW electric drive ED1

*111 kW (149 hp) electric drive ED2
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Parallel HEV
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Example: 2011 Sonata HEV with a drive-train
based on the parallel architecture:
* 121 kW (163 hp, 2.0 L) ICE
* 30 kW electric drive ED1
8.5 kW hybrid starter/generator
connected to crankshaft
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Series/Parallel HEV
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Example: 2010 Prius HEV with a drive-train based on the serles/parallel archltecture
* 73 kW (98 hp, 1.8 L) ICE 3 S
* 60 kW electric drive ED2

*100 kW total power

*42 kW (149 hp) electric drive ED1
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Converter
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Electric Bicycle Platform

Power Conversion
and Control

Battery

Electric Motor
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Electric Bicycle System
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Growing Popularity of E-bikes

Electric Bicycle Sales by Region, World Markets: 2012-2018
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Electric Bicycles Worldwide

* E-bikes accounted for $6.9 billion in revenue in 2012

» By utilizing sealed lead-acid (SLA) batteries, the cost of e-
bicycles in China averages about $167 (compared to $815 in
North America and $1,546 in Western Europe)

* China accounts for 90% of world market

e Western Europe accounts for majority of remaining 10%
despite $1,546 average cost

* North America: 89,000 bicycles sold in 2012
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Course Introduction

* Hands-on course in design and implementation of power converters
* http://web.eecs.utk.edu/~dcostine/ECE482

* Course uses electric bicycle platform as framework for the
investigation of practical issues in SMPS construction

* Unlike ECE 481, this is not a theory-focused course; expect to spend
most of your effort on construction/debugging

* Goal of course is practical experience in designing, building, testing,
and debugging power electronics

» System, components, architectures can be modified based on
student initiative

* Course is difficult; will require design effort and significant hands-on
time outside of class. Expect to experience circuit failures.

* Prerequisites: undergraduate circuits sequence, Microelectronics,
ECE 481 — Power Electronics
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Contact Information

* Instructor: Daniel Costinett
e Office: MK504

* OH during canceled lectures, in-lab, individually
scheduled

e E-mail: Daniel.Costinett@utk.edu

* Email questions will be answered within 24 hours
(excluding weekends)

* Please use [ECE 482] inthe subject line
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Course Structure

e Scheduled for one lecture and one 3-hr lab session
per week

— Lectures as needed; many weeks will have two lab sessions
— Check course website often for schedule

* Theory is presented as necessary for practical design

e Additional theory may be presented in brief sessions
during lab time

* Plan to spend 9-12 hours per week on course; mostly
lab time
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Textbook and materials

Portions of the Textbook

R.Erickson, D.Maksimovic, Fundamentals of Power Electronics,
Springer 2001

will be used. The textbook is available on-line from campus
network

* MATLAB/Simulink, LTSpice, Altium Designer; All installed in
MK227 and in the Tesla Lab

* Lecture slides and notes, additional course materials, prelabs,
experiments, etc. posted on the course website

* Lab kit is required (purchased from circuits store) in ~1-2
weeks
— Price: $150-200 per group
— Additional resistors and capacitors, etc. purchased as needed
— Need to buy any replacement parts
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Grading

Group Individual
* Lab Completion and Reporting * Pre-Lab Assignments
— 50% of total grade — 15% of total grade
— Turn in one per group — Turn in one per individual

* In-lab Demo and Participation
— 20% of total grade
— Questions asked to each group
e Labs will be complete in groups of 2-3 member
e Choose groups by Tuesday, 1/15 * Midterm Exam
— 15% of total grade

e Late work will not be accepted except _
in cases of documented emergencies — Open book/notes, in-class

. — Covers material from experiments
e Due dates posted on website course

schedule

e All assignments turned in via Canvas
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Use of Lab Time

e Attendance is required during all lectures and
scheduled lab time

— Make use of designated time with Instructor present
— Informal Q&A and end-of-experiment demonstrations

* Work efficiently but do not work independently

— Understand all aspects of design

e Qutside of normal lab hours, key access will be
granted (one per group)
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Topics Covered

Course Topics

* Battery Modeling

* Modeling and Characterization of AC Machines
* DC/DC Converter Analysis and Design

* Loss Modeling of Power Electronics

* Basic Magnetics and Transformers

* Debugging and prototyping techniques
e Current-mode Control

* Feedback Loop Design

* Layout of Power Electronics Circuits
 BLDC and PMSM Control Methods

* System-Level Control Design

System Structure

Battery Boost 3-¢ Motor
@ ococ gmp TN e
river
BMS Converter
3 'y
D vvout gl—6 /abc
PWM 3-¢ PWM Eeabc
Controller Controller

Throttle J
—)

Filtering Ve

and f
Control e




Experiment 1

Battery Motor

BMS

* Identification and characterization of motor
* Modeling of motor using simulink
* Derivation of model parameters from experimental data
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Experiment 2

Battery Motor

BMS

abc

Throttle | * Open-loop operation of Boost converter

———>| Digital * Inductor design

Controller » Converter construction and efficiency
analysis

* Bidirectional operation using voltage
source / resistive load
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Experiment 3

Battery Boost Motor

4P| ococ

Converter

BMS

Throttle | * Open-loop operation of Boost converter

———>| Digital * Inductor design

Controller » Converter construction and efficiency
analysis

* Bidirectional operation using voltage
source / resistive load
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Experiment 4

Battery Boost Motor

4P| ococ

Converter

BMS

ol |, v

out

PWM O,bc
Controller "

]

Vref

* Closed loop operation of boost converter
* Feedback loop design and stability analysis
* Analog control of PWM converters
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Experiment 5

Battery Boost 3-¢ Motor
4P| DcoC (quump Ve (g
river
BMS Converter
3 A
b vIL vvo'” 916
PWM 3-b PWM Eeabc
Controller Controller
Vref

* Circuit layout and PCB design
* Device selection and implementation according to loss analysis
* Basic control of BLDC motors
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Experiment 6

Battery Boost 3-¢ Motor
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* System-level control techniques
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Experiment 7
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* System improvements
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Example System Implementation
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Experiment 6

Experiment 5 & 7
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Experiment 1
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Design Expo

* No final exam
* Demo operational electric bicycles

* Competition to determine the most efficient
and robust system
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Electric Bicycle Safety and Law

e Traffic Law:

* Electric motor with power output not more than
1000 W

* Not capable of propelling or assisting at greater
than 20 mph

* No helmet laws for riders over age 16; you
may request one at any time

* Read Tennessee bicycle safety laws on website

General Safety

e Lab will work with high voltages (Up to ~75 V)

* Will use various machinery with high power
moving parts

* High temperatures for soldering
e Use caution at all times

* You may not work with electrical power alone
in the lab

 No food or drink allowed in the lab




Safety training Requirements

* Login to canvas at https://utk.instructure.com/courses/29416/modules
* Complete training modules

— General Lab Safety

— Hazardous Waste

— Hazard Communication Training and GHS Updates

— Fire Extinguisher Training

— Fire Safety in Laboratories

— Chemical Fume Hood Safety Training

— Compressed Gas Cylinder Training

— Laboratory Safety for Undergraduates and Minors (required only if UG or
minor)

— Personal Protective Equipment
— Electrical Safety, Orientation Level
— Lead Awareness Training
* Once all training is completed print your “Completed” Transcript and
turn it in to Dr. Costinett by «#

* Must complete with passing scores before Thursday 1/18
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Lab 1
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Introduction to Battery
Modeling
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Example EV Batteries

Cutaway battery of Nissan Leaf electric vehicle. The Leaf includes a

24kWh lithium-ion battery with a city driving range of 160km (100 miles). The
battery fits under the floor of the car, weighs 272kg (600lb
to cost $15,600 (2010).

and is estimated

Tesla Model S frame-integrated battery. The Model S includes a 60-
85kWh lithium-ion battery with a city driving range of 480km (300miles). The
battery weighs 544kg (1200Ib) and is estimated to cost $24-34,000.

Toyota Prius HEV Battery. The
2004 Prius included a 1.3 kWh
NiMH battery consisting of 168 cells
and with a $3K retail replacement
cost
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Cell Equivalent-Circuit Models

Objective:

* Dynamic circuit model capable of predicting cell voltage in response to
charge/discharge current, temperature

Further key techniques discussed in [Plett 2004-Part 2] and [Plett 2004-Part 3]

* Model parameters found using least-square estimation or Kalman filter
techniques based on experimental test data

* Run-time estimation of state of charge (SOC)

Approach: Pulsed current tests

SOC and current as a function of time during discharge SOC and current as a function of time during charge
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[Plett 2004-2] G. Plett, “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—  THE UNIVERSITY OF
TENNESSEE i §
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Battery Nomenclature

e Known beforehand:
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Example Battery
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Model 0: Voltage Source

batt V(batt V(model
X1 13 29.7V e (ea )e — (m e)
batt+
batt- 1
24.8V-
model
Vi I2
24 1 i
19'8\' 1 1 1 1 1 1 1 1
N4 0 70 140 210 280 350 420 490 560
.tran 36000 time/60s
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Model A: SOCand V__

SOC i bat
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batt V(batt
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Model B: Series Resistance

X1 13
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batt- {Idis}
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batt+ 12
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Model B: Series Resistance

SOC
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Model B Performance

V(batt) V(model)

0.0V 0.2v 0.4V 0.6V 0.8V 1.0v
V(x1:soc)
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Model C: Zero-state Hysteresis

[Plett 2004]
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Model C Performance

V(batt) V(model)

0.0V 0.2v 0.4V 0.6V 0.8V 1.0v
V(x1:soc)
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Model C Performance

V(batt) V(model)
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Dynamic Performance
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* Dynamic performance characterized by
pulse train

* Constant percent of capacity per pulse
[%Ahr] = MO heem o
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Dynamic Performance
Discharge Charge
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Model C1: One-state Hysteresis

[Plett 2004]

1
Lpar _b_’ ] Vi

R+
Vi H aAY .
SOC lbat
N + P ——
']‘ < AN
lpai i - > i VodV2) Vbai
Cnom

THE UNIVERSITY OF

TENNESSEE i §

KNOXVILLE

Model CKPerformance

T T T T T 1
0s 20s 40s 60s 80s 100s 120s
time/60

THE UNIVERSITY OF

TENNESSEE i §

KNOXVILLE




Model C1 Performance
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Model D: Diffusion (one-state)

[Plett 2004]
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Model D Performance
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Experimental Results

Modeling discharge: ESC, 2 filter states Modeling charge: ESC, 2 filter states
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[Plett 2004-2] G. Plett, “Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—  THE UNIVERSITY OF
Part 2: Modeling and Identification,” Journal of Power Sources, Vol. 134, No. 2, August 2004, pp. 262-76. TENI\J\E&%EE‘ T

param R1 = ImC1 = 10n
.model batdiode D(n=.001)
.param Rop = 1m Ron = 1m

.param VS50C0 = .5 .paramVh =1Th =10
.param Cnom = 10 D1

S0C

V=V(vh)

B1

(D Tecwom

1=1(B2)/3600

BD_

V= VsocTable(V(SOC))*7

{C1}

N
.ic V(S0C) = VSOCo

vh

El

Laplace = 1/(1+Th*s)

N
V=Vh*( IF( I(B2) < -.1, 1, IF( I(B2) > .1, -1, 0)))

.func VsocTable(x)= {table(x,0,3.0021, 0.01, 3.108, 0.02, 3.191, 0.03, 3.257, 0.04, 3.308, 0.05, 3.3...
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Modeling in Experiment 1

* Batteries have internal Battery Management
System (BMS)
— Limit over-current, over-discharge
— Do not connect directly to battery cell
* Never leave charging or discharging batteries
unattended
* You determine necessary model complexity
— Model A — Model D or other
* Not entirely analytical and solution may not be
unique
— Guess and check is fine, where appropriate
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Battery BMS

¢ Insert batteries into BMS in correct

e Use voltmeter to be sure

* Never short leads of battery or BMS

e BMS will cut off with sustained, large
current (>~2A)

* After BMS cutoff, connect leads to
charger to reset BMS
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PM Motor Operation
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Review of Basic Magnetics

e http://web.eecs.utk.edu/~dcostine/ECE481/Fall2017/schedule.php
— Lectures 35-36
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Electromechanical Conversion
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Alternative Diagram

2-Pole, 2-Phase PMSM

Two-pole, two-phase PMSM
terminal characteristics in
0 stator reference frame

2,(0.)= 4, sin(6))

a

2(0,)= =2 cos(6),)

L =7 i, ol cos(@r)
d, di, :
Vv, =7, +W =ri, + L — i bt Ay, ‘Sll’l(@r)
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3-Phase, 2-Pole PMSM
' 2,(6.)=2,sin(6,)

a

2,(8,)= A, sin Hr—z?ﬂ
2.(0.)= 2, sin 65-47”
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3-Phase, P-Pole PMSM

P =4 example

Electrical and mechanical angle

Max torque per amp

ro<i L3
22
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4-POLE ROTOR

FIGURE 5.15 Multiphase inner-rotor motor. FIGURE 5.13 Multiphase outer-rotor motor.

* Traditional motors are inner-rotor
* On e-bike, need hub to remain stationary and outer wheel to spin
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Motor Teeth/Poles Example

@) (b) © (d)
36-slot/6-pole 9-slot/6-pole 12—slot/10-pole 12-pole/10-pole
(all teeth wound)  (alternate teeth wound)
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Shaping Back-EMF

* Earlier, assumed f(0 ) = sin(6,) resulting in
sinusoidal back-EMF

* Ways to achieve:

1. Sinusoidal distribution of windings

2. Altering slot/pole/phase

e #2 is used in our motor
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Shape of Back EMF
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Motor Driver: Trapezoidal
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phose —g

Torque Ripple
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Maodel of BLDC Motor
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Example Front Wheel Hub Motor

E-bike hub (stator)

Single phase wound per tooth
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Stator Winding

Complete winding of Phase A Complete winding of all phases

56 pole
63 teeth

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE

Rotor and Poles

» QOuter rotor (to which spokes/wheel are
attached)
* Magnets alternate N-S
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