Outline

- 1. Power Converter Layout
- 2. Loss Analysis and Design
 - Low Frequency Conduction Losses
 - Inductor AC Losses
 - Core Losses
 - Inductor Design Approaches

POWER CONVERTER LAYOUT

Power Converter Layout: Buck Example

Parasitic Wire Inductances

Parasitic inductances of input loop explicitly shown:

Addition of bypass capacitor confines the pulsating current to a smaller loop:

high frequency currents are shunted through capacitor instead of input source

Loop Minimization

Even better: minimize area of the high frequency loop, thereby minimizing its inductance

Effect of Loop Inductance

D Reusch, "Optimizing PCB Layout"

Half Bridge Gate Drive Waveforms

- Gate driver chip must implement v_{as} waveforms
- Sources will have pulsating currents and need decoupling

Driving a Power MOSFET Switch

- MOSFET is off when $v_{as} < V_{th} \approx 3 \text{ V}$
- MOSFET fully on when v_{gs} is sufficiently large (10-15 V)
- Warning: MOSFET gate oxide breaks down and the device fails when v_{gs} > 20 V.
- Fast turn on or turn off (10's of ns) requires a large spike (1-2 A) of gate current to charge or discharge the gate capacitance
- MOSFET gate driver is a logic buffer that has high output current capability

Driving a Power MOSFET Switch

- MOSFET gate driver is used as a logic buffer with high output current (~1.8 A) capability
- The amplitude of the gate voltage equals the supply voltage VCC
- Decoupling capacitors are necessary at all supply pins of LM5104 (and all ICs)
- Gate resistance used to slow dv/dt at switch node

TENNESSEE TENNESSEE

Gate Drive Implementation

- Gate driver is cascaded half-bridges of increasing size to obtain quick rise times
- Reminder: keep loops which handle pulsating current small by decoupling and making close connections

Capacitor Sizing – Pulsed Caps Most Imputant hopp in Power converter layout $\frac{V_{DD}}{i_g}$ i_g

- Area of current pulse is total charge supplied to gate of capacitor
- All charge must be supplied from gate drive decoupling capacitor

High Side Signal Ground

- Gate driver chip must implement v_{qs} waveforms
- Issue: source of Q₂ is not grounded

Generating Floating Supply

- Isolated supplies sometimes used; Isolated DC-DC, batteries
- Bootstrap concept: capacitor can be charged when V_s is low, then switched

	TENNESSEE
Direct Drive	Easiest high-side application the MOSFEF and can be driven directly by the PWM controller or by a ground referenced driver, but it must meet two conditions, as follows: $V_{cc} < V_{GS,MAX}$ and $V_{Dc} < V_{cc} - V_{GS,Miller}$
Floating Supply Gate Drive	Cost impact of isolated supply is significant. Opto- coupler tends to be relatively expensive, limited in bandwidth, and noise sensitive.
Transformer Coupled Drive	Gives full gate control for an indefinite period of time, but is somewhat limited in switching performance. This can be improved with added complexity.
Charge Pump Drive	The turn-on times tend to be long for switching applications. Inefficiencies in the voltage multiplication circuit may require more than low stages of pumping.
Bootstrap Drive	Simple and inexpensive with limitations; such as, the duty cycle and on-time are both constrained by the need to refresh the bootstrap capacitor. Requires level shift, with the associated difficulties. <i>Fairchild Semi App Note AN-6076</i>

UCC27712 Internal Diagram

TENNESSEE KNOXVILLE

A Note on Grounding

TENNESSEE TENNESSEE

Power Loop Inductances

Complete Routing of Signal

- Always consider return path
- Ground plane can help, but still need to consider the path and optimize

Decoupling

- Always add bypass capacitor at power supply for any IC/reference
- Use small-valued (~100nf), low ESR and ESL capacitors (ceramic)
- Limit loop for any di/dt

TENNESSEE KNOXVILLE

Star-Grounding Vs. Daisy Chain

Figure 9. Separate the Input Current Paths Among Supplies

Capacitor Sizing – Filter Caps

https://www.intersil.com/content/dam/Intersil/documents/an13/an1325.pdf

Kelvin Connection

High Impedance Nodes

POWER CONVERTER DESIGN AND LOSS ANALYSIS

TENNESSEE KNOXVILLE

Converter Design

Analytical Loss Modeling

- High efficiency approximation is acceptable for hand calculations, as long as it is justified
 - Solve ideal waveforms of lossless converter, then calculate losses
- Argue which losses need to be included, and which may be neglected
 - "Rough" approximation to gain insight into significance

TENNESSEE T

Boost Converter Loss Analysis

• Begin by solving important waveforms throughout converter assuming lossless operation

Power Stage Losses

Supplemental Lectures

Device	Loss Mechanism	ECE 481	ECE 581
MOSFET	R _{on}	Lecture 7-8	
	C _{oss}		Lecture 7
	Overlap		Lecture 5-6
	P _g		Lecture 5
Diode	V _F	Lecture 7-8	
	R _d	Lecture 7-8	
	t _d cond		Lecture 5
	C _d		Lecture 7 (see: Coss)
ج	Reverse-Recovery	Lecture 11	
Inductor	R _{dc}	Lecture 38	
	Skin Effect	Lecture 39	
	Core Loss	Lecture 39	
	Fringing		
	Proximity	Lecture 39	

ECE581: <u>http://web.eecs.utk.edu/~dcostine/ECE581/Fall2018/schedule.php</u> ECE481: <u>http://web.eecs.utk.edu/~dcostine/ECE481/Fall2017/schedule.php</u>

LOW FREQUENCY CONDUCTION LOSSES

MOSFET Equivalent Circuit

- Considering only power stage losses (gate drive neglected)
- MOSFET operated as power switch
- Intrinsic body diode behaviors considered using normal diode analysis

Datasheet Interpretation

- On resistance extracted from datasheet waveforms
- Significantly dependent on V_{gs} amplitude, temperature

TENNESSEE T

Boost Converter RMS Currents

• MOSFET conduction losses due to $(r_{ds})_{on}$ depend given as

$$P_{cond,FET} = I_{di,rms}^{2}(r_{ds})_{on}$$

MOSFET Conduction Losses

Pulsating waveform with linear ripple, Fig. A.6:

Fig. A.6

 RMS values of commonly observed waveforms appendix from Power Book

Capacitor Loss Model

- All loss mechanisms in a capacitor are generally lumped into an empirical loss model
 - Equivalent Series Resistance (ESR) is highly frequency dependent
 - Datasheets may give effective impedance at a frequency, or loss factor:

ESR

$$\delta = \frac{\pi}{2} - \theta$$
$$D = \tan(\delta)$$

DC Inductor Resistance

Inductor Conduction Losses

Fig. A.2

 Conduction losses dependent on RMS current through inductor

TENNESSEE

Switching Loss

Dead Time Selection

TENNESSEE KNOXVILLE

Types of Switching Loss

- 1. Gate Charge Loss
- 2. Overlap Loss
- 3. Capacitive Loss
- 4. Body Diode Conduction
- 5. Reverse Recovery
- 6. Parasitic Inductive Losses
- 7. Anomalous Losses

Gate Drive Losses

- Gate charge is supplied through driver resistance during switch turn-on
- Gate charge is dissipated in gate driver on switch turn-off

Gate Charge Loss

9 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_{D} =5.2 A pulsed parameter: V_{DD}

$$P_g = Q_g V_{cc} f_s$$

Lump Switched Node Capacitance

 Consider a single equivalent capacitor at switched node which combines energy storage due to all four semiconductor devices

Diode Loss Model

 Example loss model includes resistance and forward voltage drop extracted from datasheet

Diode Reverse Recovery

- FET body diodes may turn on during dead time intervals
- Significant reverse recovery losses possible

Reverse Recovery - Datasheet

t 300

250

200

150

100 200 300 400 500 600 700 80(A/µs 1000

	Parameter	Symbol	Values			Unit
			min.	typ.	max.	
	Dynamic Characteristics					
	Reverse recovery time	t _{rr}				ns
	V _R =400V, / _F =45A, d <i>i</i> _F /d <i>t</i> =1000A/μs, <i>T</i> _j =25°C		-	140	-	
	V _R =400V, <i>I</i> _F =45A, d <i>i</i> _F /d <i>t</i> =1000A/μs, <i>T</i> _j =125°C		-	185	-	
	V _R =400V, <i>I</i> _F =45A, d <i>i</i> _F /d <i>t</i> =1000A/μs, <i>T</i> _j =150°C		-	195	-	
	Reverse recovery charge	Q _{rr}				nC
5 Typ, reverse recovery time	V _R =400V, / _F =45A, d <i>i</i> _F /d <i>t</i> =1000A/μs, <i>T</i> _i =25°C		-	1400	-	
$t_{rr} = f(dir/dt)$	V _R =400V, <i>I</i> _F =45A, d <i>i</i> _F /d <i>t</i> =1000A/μs, <i>T</i> _j =125°C		-	2650	-	
parameter: $V_{\rm R}$ = 400V, $T_{\rm i}$ = 125°	V _R =400V, I _F =45A, di _F /d <i>t</i> =1000A/μs, T _j =150°C		-	2900	-	
450 ns 350 450 45A 45A 22.5						

45A

22,5A

di_F/dt

Reverse Recovery – Rough Approximations

2500

2000

1500

di_F/dt

- $E_{rr} \approx E_{rr_datasheet} \frac{I_F}{I_{F_datasheet}} \frac{V_{DC}}{V_{DC_datasheet}}$
- **Rough** approximation with $I_F \ll I_{max}$

TENNESSEE

INDUCTOR AC LOSSES

TENNESSEE KNOXVILLE

Skin Effect in Copper Wire

• Current profile at high frequency is exponential function of distance from center with characteristic length δ

AC Resistance

$$A_{w,eff} = \pi r_w^2 - \pi (r_w - \delta)^2$$

$$R_{ac} = \rho \frac{l_b}{A_{w,eff}}$$

Skin Depth

Fig. 13.23 Penetration depth δ , as a function of frequency f, for copper wire.

Proximity Effect

 In *foil* conductor closely spaced with h >> δ, flux between layers generates additional current according to Lentz's law.

$$P_1 = I_{L,rms}^2 R_{ac}$$

• Power loss in layer 2:

$$P_2 = I_{L,rms}^2 R_{ac} + \left(2I_{L,rms}\right)^2 R_{ac}$$

$$P_2 = 5P_1$$

 Needs modification for non-foil conductors

See Fundamentals of Power Electronics, Section 13.4

Simulation Example

- AWG#30 copper wire
 - Diameter *d* = 0.294 mm
 - $d = \delta$ at around 50 kHz
- 1:1 transformer
 - Primary and secondary are the same, 30 turns in 3 layers
- · Sinusoidal currents,

 $I_{1rms} = I_{2rms} = 1 \text{ A}$

Numerical field and current density solutions using FEMM (Finite Element Method Magnetics), a free 2D solver, http://www.femm.info/wiki/HomePage

Flux density magnitude

9.500e-003 : >1.000e-002
9.000e-003 : 9.500e-003
8.500e-003 : 9.000e-003
8.000e-003 : 8.500e-003
7.500e-003 : 8.000e-003
7.000e-003 : 7.500e-003
6.500e-003 : 7.000e-003
6,000e-003 ; 6,500e-003
5.500e-003 : 6.000e-003
5.001e-003 : 5.500e-003
4.501e-003 : 5.001e-003
4.001e-003 : 4.501e-003
3.501e-003 : 4.001e-003
3.001e-003 : 3.501e-003
2.501e-003 : 3.001e-003
2.001e-003 : 2.501e-003
1.501e-003 : 2.001e-003
1.001e-003 : 1.501e-003
5.010e-004 : 1.001e-003
<1.000e-006 : 5.010e-004
1.0000 000 . 5.0100 004
Density Plot: B , Tesla

Current density magnitude

9.500e+001 : >1.000e+002
9.000e+001 : 9.500e+001
8,500e+001 : 9,000e+001
8.000e+001 : 8.500e+001
7,500e+001 : 8,000e+001
7.000e+001 : 7.500e+001
6.500e+001 : 7.000e+001
6.000e+0.01 : 6.500e+0.01
5 500e+001 : 6 000e+001
5.000e+001 : 5.500e+001
4 500e+001 : 5 000e+001
4,000=+001 : 4,500=+001
3 500e+001 : 4 000e+001
3.00001 . 3.00001
3.000001 : 3.30000001
2.5000+001 : 3.0000+001
2.0000+001 : 2.5000+001
1.500e+001 : 2.000e+001
1.000e+001 : 1.500e+001
5.000e+000 : 1.000e+001
<pre><0.000e+000 : 5.000e+000</pre>
Density Plot: J , MA/m^2

Frequency: 1 kHz

Flux density

Current Density

Frequency: 100 kHz

Total copper losses 1.8 larger than at 1 kHz

Frequency: 1 MHz

Flux density

Current Density

Total copper losses 20 times larger than at 1 kHz

Frequency: 10 MHz

 Flux density
 Current Density

 Image: Construction of the second second

Very significant proximity effect Total copper losses = 65 times larger than at 1 KHz

> TENNESSEE KNOXVILLE

Fringing

- A simple magnetic circuit with an air gap
- Near air gap, flux may bow out significantly, causing additional eddy current losses in nearby conductors

Physical Origin of Core Loss

- Magnetic material is divided into "domains" of saturated material
- Both Hysteresis and Eddy Current losses occur from domain wall shifting

Direction of magnetization in saturated domains: ↑↑↑↑ ↓↓↓↓ Direction of domain wall movement: →

Reinert, J.; Brockmeyer, A.; De Doncker, R.W.; , "Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation,"

Inductor Core Loss

• Governed by Steinmetz Equation:

 $P_{v} = K_{fe} f_{s}^{\ \alpha} (\Delta B)^{\beta} \quad [mW/cm^{3}]$

• Parameters K_{fe} , α , and β extracted from manufacturer data

 $P_{fe} = P_{v}A_{c}l_{m}$ [mW]

• $\Delta B \propto \Delta i_L \rightarrow \text{small losses}$ with small ripple

Steinmetz Parameter Extraction

TENNESSEE KNOXVILLE

Ferroxcube Curve Fit Parameters

Power losses in our ferrites have been measured as a function of frequency (f in Hz), peak flux density (B in T) and temperature (T in $^{\circ}$ C). Core loss density can be approximated ⁽²⁾ by the following formula :

$$P_{\text{core}} = C_m \cdot f^x \cdot B_{\text{peak}}^y (\text{ct}_0 - \text{ct}_1 T + \text{ct}_2 T^2) \quad [3]$$

				= ($C_{m} C_{T}$	f ^x . B ^y _{peak}	[mW/cm ³]
ferrite	f (kHz)	Cm	x	у	ct ₂	ct ₁	ct ₀
3C30	20-100	7.13.10 ⁻³	1.42	3.02	3.65.10 ⁻⁴	6.65.10 ⁻²	4
	100-200	7.13.10 ⁻³	1.42	3.02	4.10-4	6.8 .10 ⁻²	3.8
3C90	20-200	3.2.10 ⁻³	1.46	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
3C94	20-200	2.37.10 ⁻³	1.46	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
	200-400	2.10 ⁻⁹	2.6	2.75	1.65.10 ⁻⁴	3.1.10 ⁻²	2.45
3F3	100-300	0.25.10 ⁻³	1.63	2.45	0.79.10 ⁻⁴	1.05.10 ⁻²	1.26
	300-500	2.10 ⁻⁵	1.8	2.5	0.77.10-4	1.05.10-2	1.28
	500-1000	3.6.10-9	2.4	2.25	0.67.10-4	0.81.10 ⁻²	1.14
3F4	500-1000	12.10-4	1.75	2.9	0.95.10 ⁻⁴	1.1.10 ⁻²	1.15
	1000-3000	1.1.10 ⁻¹¹	2.8	2.4	0.34.10-4	0.01.10-2	0.67

Table 1: Fit parameters to calculate the power loss density

the actual losses.

Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.; , "Measurement and loss model of territes with non-sinusoidal waveforms,"
K. Venkatachalam; C. R. Sullivan; T. Abdallah; H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters"

TENNESSEE KNOXVILLE

1

VSE

ŚΈ

INDUCTOR DESIGN

Inductor Design

Freedoms:

- 1. Core Size and Material
- 2. Number of turns and wire gauge
- 3. Length of Air Gap

Constraints:

- 1. Obtain Designed L
- 2. Prevent Saturation
- 3. Minimize Losses

Minimization of Losses

- For given core, number of turns can be used to index possible designs, with air gap solved after (and limited) to get correct inductance
- A minimum sum of the two exists and can be solved
- Design always subject to constraint B_{max} < B_{sat}

Spreadsheet Design

	A	в	С	D	E	F	G	н	1 I.	J	К	L M
1							Ver	Vdr [V]	12			
2		Vg[V]	25		Pmax [W	250	- E	dt [ns]	500			
3	, <u>6</u>	Vout [V]	50	all of a	L [uH]	250	ate at	Rg_on [0	10			
4	8 Ë	dV [V]	2	Qe Cr.	fs [kHz]	2.00E+01	Ö	Rg_off[0	2			
5	a a	uO	1.257E-06									
6	ž	rho [Ohr	1.68E-06									
7	-	TA[C]	25									
8			0	0.50								
9			U Louis (A)	0.50	-				└─── ∔			Warnings
10			IOUC[A]	5.00		tow on [no]	175					
12			HE LMJ	1.25		tsw.on[ns]	35		PLDC (mOhm)	4 71		
13			Imax [A]	11.25	8	csw,on [ns]			PLAC [mOhm]	10.05		
14			Imin [A]	8.75	ŝ	Prr	1.16		Pl.copper	0.48		
15		5	llrms [A]	10.03	Ľ	Pq1,ov	1.18	88	Pl,core	0.06		Wire signifiantly thicker than one skin depth, AC losses may be significant
16		5	lrip,rms [A]	0.72	Ē	Pq2,bd	0.32	8	PL [W]	0.54		
17		5	lq1rms [A]	7.09	ő	Pq1,Coss	0.00	<u></u>	Pq1[V]	2.46		
18		-	lq2rms [A]	7.09	Σ	Pq1,Cond	0.12	Tot 1	Pq2[V]	0.44		
19			lorms [A]	5.03		Pq2,Cond	0.12					
20									Ploss	3.44		
21			Inductor	10							_	
22			n	30	_	MOSFET	5		Eff	98.64		
23				FTD 10 0000	200	Ron (mOhm)	2.3					Lice of spreadsheet
24			L'ore	ETD49-3090		Ug[nU]	210		D.I. MARIN	0		
25		2 8	Ac[mm2]	211		Vr[V]	2007		Bth [K/W]	3		
26		85	Wa[mm2]	213		Grr[nC]	4000		TOTICI	22.4		
27		ő	ve (mmo) MLT (===1	24000		Loss [pr]	4000		TOPICI	32.4		normits simple iteration
20			Pier (ming	05		or prist	100	OP , ont	1 0/2 [0]	20.5		permis simple neration
30			ui	2300		C fuE1	31.25					•
31			Bsat[m]]	470			51.20	Desain G	16.64			ofdooice
32		a o	Cm	0.0032								ordesign
33		ater etei	8	1.46								
34		a K	У	2.75								
35		Par	ct2	0.000165								Can aacily change core
36		0	ot1	0.031								* Call Easily change core,
37			ct0	2.45								, 0 ,
38		-		0.00								· · · ·
39		aig.	DeltaB[1] RecuteT1	0.05								switching treatiency loss
40		Des	la (mm)	0.44								Switching nequency, 1033
42		ğ	Av (mm ²]	9.1								
43		n n	rw [mm]	1.70								constraints ata
44		Ĕ	Skin Depth [0.46								constraints. etc.
45												

Matlab (Programmatic) Design

1		<pre>[]function [n, lg, Pq1, Pq2, Pl, eta, Cmin] =</pre>	= TestBoostDesign(Pmax, fs, L, dt, core_geom, core_mat, MOSFET)									
2		STestBoostDesign calculate boost conveter efficiency and temperature rise										
3		%for various designs										
4		<pre>% fs = switching frequency (in Hz)</pre>										
5		<pre>% L = inductance (in Henries)</pre>										
6		<pre>% n = number of turns on inductor</pre>										
7		<pre>% dt = switching dead time (in seconds)</pre>										
8		<pre>% core_geom = core geometry, chosen from 'EFD25', 'ETD29', 'ETD39', 'ETD44', or 'ETD49'</pre>										
9		<pre>% core_mat = core material, chosen from '3</pre>	3F3', '3C90', or '3F4'									
10		& MOSFET = MOSFET selection, chosen from 'A	'AOT', 'FDP', 'IPP2', 'IRF',									
11		-% 'CSD' or 'IPPO'										
12			• Matlah or similar parmits									
13	-	Vg = 25;	iviatian, or similar, permits									
14	-	Vout = 50;										
15	-	<pre>Iout = Pmax/Vout;</pre>	I more powerful iteration and									
16	-	Ts = 1/fs;										
17	-	D = 1-Vg/Vout;	nlotting/insight into design									
18	-	dVout = 2;	plotting/insight into design									
19	-	Vdr = 12;										
20			I variation									
21	-	Rgon = 10;										
22	-	Rgoff = 2;										
23												
24	-	rho = 1.724e-6; %ohms*cm										
25	-	-u0 = 4*pi*1e-7;										
26												
27		🗄 %% Inductor Datasheet Parameters										
28	-	switch core_geom										
29	-	case 'EFD25'										
30	- MLT = 46.4; %mm											
31	-	Ac = 58; %mm^2										
32	-	Ve = 3300; %mm^3										
33	-	- Wa = 40.2; %mm^2										
			THE UNIVERSITY OF									

Closed-Form Design Methods

• Fundamentals of Power Electronics Ch 13-15

- Step-by-Step design methods
- Simplified, and may require additional calculations

 K_g and K_{gfe} Methods

- Two closed-form methods to solve for the optimal inductor design *under certain constraints/assumptions*
- Neither method considers losses other than DC copper and (possibly) steinmetz core loss
- Both methods particularly well suited to spreadsheet/iterative design procedures

	K _g	K _{gfe}
Losses	DC Copper (specified)	DC Copper, SE Core Loss (optimized)
Saturation	Specified	Checked After
B _{max}	Specified	Optimized

K_g Method

- Method useful for filter inductors where ΔB is small
- Core loss is not included, but may be significant particularly if large ripple is present
- Copper loss is specified through a set target resistance
- The desired B_{max} is given as a constraint
- Method does not check feasibility of design; must ensure that air gap is not extremely large or wire size excessively small
- Simple first-cut design technique; useful for determining approximate core size required
- Step-by-step design procedure included on website

- Method useful for cases when core loss and copper loss are expected to be significant
- Saturation is not included in the method, rather it must be checked afterward
- Enforces a design where the sum of core and copper is minimized

The following quantities are specific	ed, using the units note	ed:
Wire effective resistivity	ρ	$(\Omega$ -cm)
Total rms winding current, ref to pri	I _{tot}	(A)
Desired turns ratios	$n_2/n_1, n_3/n_1$, etc.	
Applied pri volt-sec	λ_1	(V-sec)
Allowed total power dissipation	P _{tot}	(W)
Winding fill factor	K_{μ}	
Core loss exponent	β	
Core loss coefficient	K_{fe}	(W/cm^3T^β)
Other quantities and their dimensio	ns:	
Core cross-sectional area	A_c	(cm^2)
Core window area	Ŵ _A	(cm^2)
Mean length per turn	MLT	(cm)
Magnetic path length	ℓ_e	(cm)
Wire areas	$A_{w^{1}}, \ldots$	(cm^2)
Peak ac flux density	ΔB	(T)

K_{gfe} Method: Summary

- Method enforces an operating ΔB in which core and copper losses are minimized
- Only takes into account losses from standard Steinmetz equation; not correct unless waveforms are sinusoidal
- Does not consider high frequency losses
- Step-by-step design procedure included on website

