Supplemental Materials

PM Motor Design BLDC-vs-PMSM

Shape of Back EMF – PMSM Winding

- Sinusoidal back EMF achieved with sinusoidal winding distribution
- Generally termed Permanent Magnet Synchronous Motor (PMSM)

BLDC Motor Winding

http://web.eecs.utk.edu/courses/spring2015/ece482/materials/brushless-motor.swf

- Brushless DC (BLDC) Motors are not wound sinusoidally
- This results in Trapezoidal back emf, rather than sinusoidal
- Can be driven simply with Square-waves to achieve relatively low torque ripple

BLDC Waveforms During Rotation

Simulation of BLDC and PMSM

(a) Trapezoidal commutation with BLDC

(c) Sinusoidal Commutation with PMSM

(b) Trapezoidal commutation with PMSM

- Low Torque ripple when BLDC driven by square waves or PMSM driven by sinusoid
- Moderate torque ripple when PMSM driven by square waves

Outer- vs. Inner-Rotor

FIGURE 5.15 Multiphase inner-rotor motor.

FIGURE 5.13 Multiphase outer-rotor motor.

- Traditional motors are inner-rotor
- On e-bike, need hub to remain stationary and outer wheel to spin

4-POLE ROTOR

Example Front Wheel Hub Motor

E-bike hub (stator)

Single phase wound per tooth

Stator Winding

Complete winding of Phase A

Complete winding of all phases

56 pole63 teeth

Rotor and Poles

- Outer rotor (to which spokes/wheel are attached)
- Magnets alternate N-S

Example Comparison of Inner/Outer Rotor

TABLE 5.1 Comparison of Outer-Rotor and Inner-Rotor Motors

Outer rotor	Inner rotor		
Shorter end turns yield lower inductance and less copper loss.	Longer end turns yield higher inductance and more copper loss.		
Greater rotor inertia.	Lower rotor inertia.		
Less torque perturbation.	More torque perturbation.		
Slower acceleration.	Fast acceleration.		
Lower-energy magnets can be used.	Higher-energy magnets required.		

TABLE 5.2 Inner-Rotor Versus Outer-Rotor Motor Applications

Requirement	Inner rotor	Outer rotor	
Rapid acceleration	Very good	Poor	
Heat dissipation	Very good	Poor	
Low cogging	Okay	Good	
Pump application	Okay	Good	
Disk-drive application	Poor	Very good	
Fan application	Poor	Very good	
High side load	Good	Poor	
Use with speed reducers	Good	Poor to okay	
Reversible	Very good	Poor	

Motor Teeth/Poles Example

(a) 36-slot/6-pole

(b) 9-slot/6-pole

(c) 12–slot/10-pole (all teeth wound)

(d) 12-pole/10-pole (alternate teeth wound)

Number of Phases

Single:

- Poor conductor utilization
- High torque ripple
- Unable to start from stall reliably

- + Easy to wind
- + few power switches

• Two:

- Poor conductor utilization
- Minimum 4 power switches
- + reliable starting
- + reduced torque ripple

Three

costly to wind

- + Good conductor utilization
- + as few as three switches

Number of Poles

- flux spread over more poles, reducing flux density
- less magnetic material required on stator to prevent saturation
- Higher part count and assembly time
- Higher electrical frequency

Number of Teeth

- Back EMF determined by "Teeth Per Pole Per Phase"
- Can be used to smooth out back EMF without sinusoidal winding

Teeth Per Pole Per Phase

• 33 Teeth, 2 Poles

• 33 Teeth, 22 Poles

• 36 Teeth, 22 Poles

Shape of Back EMF

- 36 Teeth, 22 Poles
- Teeth/Pole/Phase = 0.5455

- 33 Teeth, 22 Poles
- Teeth/Pole/Phase = 0.5

General Effects of Design Alteration

TABLE 5.4 Effects of Changing Number of Poles, Teeth, and Phases

	Effect on design factors					
Change	Cogging	Speed	Torque	Active material utilization	Cost	
Number of						
poles						
Increased	Decreases	Decreases	Increases	Increases	Increases	
Decreased	Increases	Increases	Decreases	Decreases	Decreases	
Number of teeth						
Increased	Decreases	No change	No change	Increases	Increases	
Decreased	Increases	No change	No change	Decreases	Decreases	
Number of phases						
Increased	Decreases	No change	No change	Increases	Increases	
Decreased	Increases	No change	No change	Decreases	Decreases	

Subject to constraints on: Outer Vary the parameters: dimensions number of poles, length, airgap length, slot and Rigidity of magnet dimensions the structure Express stator parameters as a function of the variables Open-circuit airgap flux-density Flux density in: Magnetic stator yoke and saturation stator teeth Torque) Current loading Thermal Current density behaviour Conductor number Efficiency Copper losses Active weight NO Optimal Result? YES Verification with **FEM**

Figure 4.1: Optimization procedure.

Example Design Procedure

FEM Simulation of Motor

