Course Introduction

- Hands-on course in design and implementation of power converters
 - http://web.eecs.utk.edu/~dcostine/ECE482
- Course uses electric bicycle platform as framework for the investigation of practical issues in SMPS construction
- Unlike ECE 481, this is *not* a theory-focused course; expect to spend most of your effort on construction/debugging
- Goal of course is practical experience in designing, building, testing, and debugging power electronics
- System, components, architectures can be modified based on student initiative
- Course is difficult; will require design effort and significant hands-on time outside of class. Expect to experience circuit failures.
- Prerequisites: undergraduate circuits sequence, Microelectronics,
 ECE 481 Power Electronics

Contact Information

- Instructor: Daniel Costinett
 - Office: MK504
 - OH: W 4-5, R 12:30-2, in-lab, individually scheduled
 - E-mail: Daniel.Costinett@utk.edu
 - Email questions will be answered within 24 hours (excluding weekends)
 - Please use [ECE 482] in the subject line

Course Structure

- Scheduled for two 2-hr lab sessions per week
 - Reduced from 2x 3-hr sessions in previous semesters
- Theory is presented as necessary for practical design
- Additional theory may be presented in brief sessions during lab time
- Plan to spend <u>9-12</u> hours per week on course; mostly lab time

Textbook and materials

Portions of the Textbook

R.Erickson, D.Maksimovic, *Fundamentals of Power Electronics*, Springer 2001

will be used. The textbook is available on-line from campus network

- MATLAB/Simulink, LTSpice, Altium Designer; All installed in MK225 and available on remote servers
- Lecture slides and notes, additional course materials, prelabs, experiments, etc. posted on the course website
- Lab kit is required (purchased from circuits store) in ~1-2 weeks
 - Price: \$150-200 per group
 - Additional resistors and capacitors, etc. purchased as needed
 - Need to buy any replacement parts

Grading

Group

- Lab Completion and Reporting
 - 50% of total grade
 - Turn in one per group

- Labs will be complete in groups of 2-3
 - Choose groups by Thursday, 1/27
- Late work will not be accepted except in cases of documented emergencies
- Due dates posted on website course schedule
- All assignments turned in via Canvas

<u>Individual</u>

- Pre-Lab Assignments
 - 15% of total grade
 - Turn in one per individual
- In-lab Demo and Participation
 - 20% of total grade
 - Questions asked to each group member
- Midterm Exam
 - 15% of total grade
 - Open book/notes, take-home
 - Covers material from experiments

Lectures

- In past, 5-7x 2-3 hour lectures
- New trial this semester:
 - Using all recorded lectures
 - Watch prior to the associated lab/prelab
 - Discuss during lab sessions
 - Can add additional lectures if needed

Lab Groups

- Self-assign in Canvas prior to next class
 - People → Groups (tab)
 - Groups of 2-3 (11 students)
 - Do not need to stay in same section 482/582
- Select one person to obtain key for lab access
 - Should be graduate student, if possible

Use of Lab Time

- Attendance is required during all lectures and scheduled lab time
 - Make use of designated time with Instructor present
 - Informal Q&A and end-of-experiment demonstrations
- Work efficiently but do not work independently
 - Understand all aspects of design
- Outside of normal lab hours, key access will be granted (one per group)

Topics Covered

Course Topics

- Battery Modeling
- Modeling and Characterization of AC Machines
- DC/DC Converter Analysis and Design
- Loss Modeling of Power Electronics
- Basic Magnetics and Transformers
- Debugging and prototyping techniques
- Current-mode Control
- Feedback Loop Design
- Layout of Power Electronics Circuits
- BLDC and PMSM Control Methods
- System-Level Control Design

System Structure

- Identification and characterization of motor
- Modeling of motor using simulink
- Derivation of model parameters from experimental data

- Closed loop operation of boost converter
- Feedback loop design and stability analysis
- Analog control of PWM converters

- Circuit layout and PCB design
- Device selection and implementation according to loss analysis
- Basic control of BLDC motors

• System-level control techniques

• System improvements

Example System Implementation

Design Expo

- No final exam
- Demo operational electric bicycles
- Competition to determine the most efficient and robust system

Electric Bicycle Safety and Law

- Traffic Law:
 - Electric motor with power output not more than 1000 W
 - Not capable of propelling or assisting at greater than 20 mph
- No helmet laws for riders over age 16; you may request one at any time
- Read Tennessee bicycle safety laws on website

General Safety

- Lab will work with high voltages (Up to ~75 V)
- Will use various machinery with high power moving parts
- High temperatures for soldering
- Use caution at all times
- You may not work with electrical power alone in the lab
- No food or drink allowed in the lab

Safety training Requirements

- Login to canvas at https://utk.instructure.com/courses/29416/modules
- Complete training modules
 - General Lab Safety
 - Hazardous Waste
 - Hazard Communication Training and GHS Updates
 - Fire Extinguisher Training
 - Fire Safety in Laboratories
 - Chemical Fume Hood Safety Training
 - Compressed Gas Cylinder Training
 - Laboratory Safety for Undergraduates and Minors (required only if UG or minor)
 - Personal Protective Equipment
 - Electrical Safety, Orientation Level
 - Lead Awareness Training
- Once all training is completed print your "Completed" Transcript and turn it in to Dr. Costinett by e-mail
- Must complete with passing scores before Thursday 1/18/

Lab 1

Model D: Diffusion (one-state)

[Plett 2004]

3-Phase, P-Pole PMSM

P = 4 example

Electrical and mechanical angle

$$\theta_r = \frac{P}{2}\theta_{rm}$$

Electrical and mechanical speed

$$\omega_r = \frac{P}{2}\omega_{rm}$$

Max torque per amp

$$T_m \le \lambda_m \, \frac{P}{2} \frac{3}{2} I$$

Battery Modeling in Experiment 1

- Batteries have Battery Management System (BMS)
 - Limit over-current, over-discharge
 - Do not connect directly to battery cell
- Never leave charging or discharging batteries unattended
- Not entirely analytical and solution may not be unique
 - Guess and check is fine, where appropriate
 - Not all parameters need to be included

- Insert batteries into BMS in correct polarity
 - Use voltmeter to be sure
- BMS will cut off with sustained, large current (>~2A)
- After BMS cutoff, connect leads to charger to reset BMS

Motor Modeling in Experiment 1

- Should not apply any voltage to the motor windings or hall outputs
 - Solely measure induced voltage
 - Can power up hall sensors as detailed in lab
- Be careful not to short any wires while spinning the motor

