## **Boost Converter Loss Analysis**



• Begin by solving important waveforms throughout converter assuming lossless operation



## **Power Stage Losses**







#### LOW FREQUENCY CONDUCTION LOSSES

## **MOSFET Equivalent Circuit**



- Considering only power stage losses (gate drive neglected)
- MOSFET operated as power switch
- Intrinsic body diode behaviors considered using normal diode analysis



## **Datasheet Interpretation**

Drain-source on-state resistance

| $R_{DS(on)}$ | V <sub>GS</sub> =10 V, / <sub>D</sub> =50 A | - | 16 | 20 | mΩ |  |
|--------------|---------------------------------------------|---|----|----|----|--|
|              | V <sub>GS</sub> =8 V, I <sub>D</sub> =25 A  | - | 16 | 20 |    |  |

#### 5 Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS}); T_{\rm i} = 25 \,^{\circ}{\rm C}$ 

parameter: V<sub>GS</sub>

400

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_i=25 \text{ °C}$ 

parameter: V<sub>GS</sub>

9 Drain-source on-state resistance  $R_{\rm DS(on)}=f(T_{\rm i}); I_{\rm D}=100 \text{ A}; V_{\rm GS}=10 \text{ V}$ 

12





- On resistance extracted from datasheet waveforms
- Significantly dependent on V<sub>as</sub> amplitude, temperature



## **Boost Converter RMS Currents**



• MOSFET conduction losses due to  $(r_{ds})_{on}$  depend given as

$$P_{cond,FET} = I_{di,rms}^{2}(r_{ds})_{on}$$



## **MOSFET Conduction Losses**

Pulsating waveform with linear ripple, Fig. A.6:

Fig. A.6

 RMS values of commonly observed waveforms appendix from Power Book



## **Capacitor Loss Model**



- Operation well below resonance
- All loss mechanisms in a capacitor are generally lumped into an empirical loss model
- Equivalent Series Resistance (ESR) is highly frequency dependent
- Datasheets may give effective impedance at a frequency, or loss factor:

$$\delta = \frac{\pi}{2} - \theta$$
$$D = \tan(\delta)$$



## **DC Inductor Resistance**

- DC Resistance given by  $R_{DC} = \rho \frac{l_b}{A_w}$
- At room temp,  $\rho = 1.724 \cdot 10^{-6} \,\Omega$ -cm

Losses due to DC current:  

$$P_{cu,DC} = I_{L,rms}^2 R_{DC}$$



## **Inductor Conduction Losses**

DC plus linear ripple, Fig. A.2:



 Conduction losses dependent on RMS current through inductor



## **Switching Loss**





## **Dead Time Selection**





## **Types of Switching Loss**

- 1. Gate Charge Loss
- 2. Overlap Loss
- 3. Capacitive Loss
- 4. Body Diode Conduction
- 5. Reverse Recovery
- 6. Parasitic Inductive Losses
- 7. Anomalous Losses



## **Gate Drive Losses**



- Gate charge is supplied through driver resistance during switch turn-on
- Gate charge is dissipated in gate driver on switch turn-off











## Lump Switched Node Capacitance

 Consider a single equivalent capacitor at switched node which combines energy storage due to all four semiconductor devices





## **Diode Loss Model**



 Example loss model includes resistance and forward voltage drop extracted from datasheet





## **Diode Reverse Recovery**

- FET body diodes may turn on during dead time intervals
- Significant reverse recovery losses possible





## **Reverse Recovery - Datasheet**

|                                                   | Parameter                                                                                                                     | Symbol          | Values |      |      | Unit |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|------|------|------|
|                                                   |                                                                                                                               |                 | min.   | typ. | max. |      |
|                                                   | Dynamic Characteristics                                                                                                       |                 |        |      |      |      |
|                                                   | Reverse recovery time                                                                                                         | t <sub>rr</sub> |        |      |      | ns   |
|                                                   | V <sub>R</sub> =400V, <i>I</i> <sub>F</sub> =45A, d <i>i</i> <sub>F</sub> /d <i>t</i> =1000A/μs, <i>T</i> <sub>j</sub> =25°C  |                 | -      | 140  | -    |      |
|                                                   | V <sub>R</sub> =400V, <i>I</i> <sub>F</sub> =45A, d <i>i</i> <sub>F</sub> /d <i>t</i> =1000A/μs, <i>T</i> <sub>j</sub> =125°C |                 | -      | 185  | -    |      |
|                                                   | V <sub>R</sub> =400V, <i>I</i> <sub>F</sub> =45A, d <i>i</i> <sub>F</sub> /d <i>t</i> =1000A/μs, <i>T</i> <sub>j</sub> =150°C |                 | -      | 195  | -    |      |
|                                                   | Reverse recovery charge                                                                                                       | Q <sub>rr</sub> |        |      |      | nC   |
| 5 Tvp. reverse recovery time                      | V <sub>R</sub> =400V, <i>I</i> <sub>F</sub> =45A, d <i>i</i> <sub>F</sub> /d <i>t</i> =1000A/μs, <i>T</i> <sub>j</sub> =25°C  |                 | -      | 1400 | -    |      |
| $t_{rr} = f(di_{rr}/dt)$                          | V <sub>R</sub> =400V, <i>I</i> <sub>F</sub> =45A, d <i>i</i> <sub>F</sub> /d <i>t</i> =1000A/μs, <i>T</i> <sub>j</sub> =125°C |                 | -      | 2650 | -    |      |
| parameter: $V_{\rm R}$ = 400V, $T_{\rm j}$ = 125° | $V_{\rm R}$ =400V, $I_{\rm F}$ =45A, $di_{\rm F}/dt$ =1000A/µs, $T_{\rm j}$ =150°C                                            |                 | -      | 2900 | -    |      |

#### 450 ns 90A 45A 350 22.5A tr 300 250 200 150 100 L 300 400 500 600 700 80( A/µs 1000 di<sub>F</sub>/dt





#### **Reverse Recovery – Rough Approximations**



• **Rough** approximation with  $I_F \ll I_{max}$ 



#### **INDUCTOR AC LOSSES**



## **Skin Effect in Copper Wire**



- Current profile at high frequency is exponential function of distance from center with characteristic length  $\delta$ 



## **AC Resistance**



$$A_{w,eff} = \pi r_w^2 - \pi (r_w - \delta)^2$$

$$R_{ac} = \rho \frac{l_b}{A_{w,eff}}$$



## **Skin Depth**



**Fig. 13.23** Penetration depth  $\delta$ , as a function of frequency *f*, for copper wire.

TENNESSEE KNOXVILLE

Wire diameter



(a)

Primary winding



## **Proximity Effect**

 In *foil* conductor closely spaced with h >> δ, flux between layers generates additional current according to Lentz's law.

$$P_1 = I_{L,rms}^2 R_{ac}$$

- Power loss in layer 2:  $P_2 = I_{L,rms}^2 R_{ac} + (2I_{L,rms})^2 R_{ac}$   $P_2 = 5P_1$
- Needs modification for non-foil conductors

See Fundamentals of Power Electronics, Section 13.4



## **Simulation Example**



- AWG#30 copper wire
  - Diameter *d* = 0.294 mm
  - $d = \delta$  at around 50 kHz
- 1:1 transformer
  - Primary and secondary are the same, 30 turns in 3 layers
- · Sinusoidal currents,

$$I_{1rms} = I_{2rms} = 1 \text{ A}$$

Numerical field and current density solutions using FEMM (Finite Element Method Magnetics), a free 2D solver, http://www.femm.info/wiki/HomePage



#### Flux density magnitude

|                          | 9.500e-003 : >1.000e-002 |  |  |  |  |  |
|--------------------------|--------------------------|--|--|--|--|--|
|                          | 9 000e-003 · 9 500e-003  |  |  |  |  |  |
|                          | 8 500e-003 : 9 000e-003  |  |  |  |  |  |
|                          | 8.000-003 . 9.000-003    |  |  |  |  |  |
|                          | 7 F00a 003 : 8.500e-003  |  |  |  |  |  |
|                          | 7.500e-003 : 8.000e-003  |  |  |  |  |  |
|                          | 7.000e-003: 7.500e-003   |  |  |  |  |  |
|                          | 6.500e-003: 7.000e-003   |  |  |  |  |  |
|                          | 6.000e-003 : 6.500e-003  |  |  |  |  |  |
|                          | 5.500e-003: 6.000e-003   |  |  |  |  |  |
|                          | 5.001e-003: 5.500e-003   |  |  |  |  |  |
|                          | 4.501e-003 : 5.001e-003  |  |  |  |  |  |
|                          | 4.001e-003 : 4.501e-003  |  |  |  |  |  |
|                          | 3.501e-003 : 4.001e-003  |  |  |  |  |  |
|                          | 3.001e-003 : 3.501e-003  |  |  |  |  |  |
|                          | 2.501e-003 : 3.001e-003  |  |  |  |  |  |
|                          | 2 001e-003 : 2 501e-003  |  |  |  |  |  |
|                          | 1 501e-003 : 2 001e-003  |  |  |  |  |  |
|                          | 1.0010.002 1 1 5010.002  |  |  |  |  |  |
|                          | 1.001e-003 : 1.501e-003  |  |  |  |  |  |
|                          | 5.010e-004 : 1.001e-003  |  |  |  |  |  |
|                          | <1.000e-006 : 5.010e-004 |  |  |  |  |  |
| Density Plot: [B], Tesla |                          |  |  |  |  |  |

#### Current density magnitude



THE UNIVERSITY OF TENNESSEE KNOXVILLE

## Frequency: 1 kHz

#### Flux density



#### **Current Density**





## Frequency: 100 kHz



#### Total copper losses 1.8 larger than at 1 kHz



## Frequency: 1 MHz

# Flux density Current Density

#### Total copper losses 20 times larger than at 1 kHz



## **Frequency: 10 MHz**



#### Very significant proximity effect Total copper losses = 65 times larger than at 1 KHz



## Fringing



 Near air gap, flux may bow out significantly, causing additional eddy current losses in nearby conductors



## **Physical Origin of Core Loss**

- Magnetic material is divided into "domains" of saturated material
- Both Hysteresis and Eddy Current losses occur from domain wall shifting





## **Inductor Core Loss**

• Governed by Steinmetz Equation:

 $P_{v} = K_{fe} f_{s}^{\ \alpha} (\Delta B)^{\beta} \quad [mW/cm^{3}]$ 

• Parameters  $K_{fe}$ ,  $\alpha$ , and  $\beta$ extracted from manufacturer data

 $P_{fe} = P_v A_c l_m \,[\text{mW}]$ 

•  $\Delta B \propto \Delta i_L \rightarrow \text{small losses}$ with small ripple





## **Steinmetz Parameter Extraction**





## **Ferroxcube Curve Fit Parameters**

Power losses in our ferrites have been measured as a function of frequency (f in Hz), peak flux density (B in T) and temperature (T in  $^{\circ}$ C). Core loss density can be approximated <sup>(2)</sup> by the following formula :

 $P_{\text{core}} = C_m \cdot f^{x} \cdot B_{peak}^{y} (ct_0 - ct_1 T + ct_2 T^2) \quad [3]$ 

 $= C_m \cdot C_T \cdot f^x \cdot B_{peak}^y \quad [mW/cm^3]$ 

| errite | f (kHz)   | Cm                    | x    | у    | ct <sub>2</sub>       | ct <sub>1</sub>       | ct <sub>0</sub> |
|--------|-----------|-----------------------|------|------|-----------------------|-----------------------|-----------------|
| 3C30   | 20-100    | 7.13.10 <sup>-3</sup> | 1.42 | 3.02 | 3.65.10 <sup>-4</sup> | 6.65.10 <sup>-2</sup> | 4               |
|        | 100-200   | 7.13.10 <sup>-3</sup> | 1.42 | 3.02 | 4.10-4                | 6.8 .10 <sup>-2</sup> | 3.8             |
| 3C90   | 20-200    | 3.2.10 <sup>-3</sup>  | 1.46 | 2.75 | 1.65.10 <sup>-4</sup> | 3.1.10 <sup>-2</sup>  | 2.45            |
| 3C94   | 20-200    | 2.37.10 <sup>-3</sup> | 1.46 | 2.75 | 1.65.10 <sup>-4</sup> | 3.1.10 <sup>-2</sup>  | 2.45            |
|        | 200-400   | 2.10 <sup>-9</sup>    | 2.6  | 2.75 | 1.65.10 <sup>-4</sup> | 3.1.10 <sup>-2</sup>  | 2.45            |
| 3F3    | 100-300   | 0.25.10 <sup>-3</sup> | 1.63 | 2.45 | 0.79.10 <sup>-4</sup> | 1.05.10 <sup>-2</sup> | 1.26            |
|        | 300-500   | 2.10 <sup>-5</sup>    | 1.8  | 2.5  | 0.77.10-4             | 1.05.10-2             | 1.28            |
|        | 500-1000  | 3.6.10-9              | 2.4  | 2.25 | 0.67.10-4             | 0.81.10 <sup>-2</sup> | 1.14            |
| 3F4    | 500-1000  | 12.10-4               | 1.75 | 2.9  | 0.95.10-4             | 1.1.10-2              | 1.15            |
|        | 1000-3000 | 1.1.10 <sup>-11</sup> | 2.8  | 2.4  | 0.34.10-4             | 0.01.10 <sup>-2</sup> | 0.67            |

Table 1: Fit parameters to calculate the power loss density



**NSE/iGSE** 

$$P_{NSE} = \left(\frac{\Delta B}{2}\right)^{\beta - \alpha} \frac{k_N}{T} \int_{0}^{T} \left|\frac{dB}{dt}\right|^{\alpha} dt$$



Simple Formula for Square-wave voltages:

$$P_{NSE} = k_N (2f)^{\alpha} (\Delta B)^{\beta} \left( D^{1-\alpha} + (1-D)^{1-\alpha} \right)$$
(10)

where f is the operating frequency;  $\Delta B/2$  is the peak induction; D is the duty ratio of the square wave voltage.

Note: The second and third harmonics are dominant at moderate values of duty ratio D. For extreme values of D (95%), a higher value of  $\alpha$  could give better matching to the actual losses.



 Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.; , "Measurement and loss model of ferrites with non-sinusoidal waveforms,"
 K. Venkatachalam; C. R. Sullivan; T. Abdallah; H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters"





#### **INDUCTOR DESIGN**

## **Inductor Design**

## Freedoms:

- 1. Core Size and Material
- 2. Number of turns and wire gauge
- 3. Length of Air Gap

## Constraints:

- 1. Obtain Designed L
- 2. Prevent Saturation
- 3. Minimize Losses





## **Minimization of Losses**

- For given core, number of turns can be used to index possible designs, with air gap solved after (and limited) to get correct inductance
- A minimum sum of the two exists and can be solved
- Design always subject to constraint B<sub>max</sub> < B<sub>sat</sub>



Number of Turns



## **Spreadsheet Design**

|       | A B        | С                     | D            | Е        | F           | G            | н        | 1                                     | J     | к | L                                                                           |
|-------|------------|-----------------------|--------------|----------|-------------|--------------|----------|---------------------------------------|-------|---|-----------------------------------------------------------------------------|
| 1     |            |                       |              |          |             | Ver          | Vdr [V]  | 12                                    |       |   |                                                                             |
| 2     | Vg[V]      | 25                    |              | Pmax[W   | 250         | 5            | dt [ns]  | 500                                   |       |   |                                                                             |
| 3     | 5 Vout [V  | ] 50                  | asignoice a  | L [uH]   | 250         | ate          | Rg_on [( | 10                                    |       |   |                                                                             |
| 4     |            | 2                     | Q. C.        | fs [kHz] | 2.00E+01    | o            | Rg_off[( | 2                                     |       |   |                                                                             |
| 5     |            | 1.257E-06             |              |          |             |              |          |                                       |       |   |                                                                             |
| 6     | i rholUh   | m 1.68E-06            |              |          |             |              |          |                                       |       |   |                                                                             |
| · ·   | TALCI      | 25                    |              |          |             |              |          |                                       |       |   |                                                                             |
| , a l |            | n                     | 0.50         |          |             |              |          |                                       |       |   | Varpings                                                                    |
| 10    |            | lout [A]              | 5.00         |          |             |              |          | i i i i i i i i i i i i i i i i i i i |       |   | indinings                                                                   |
| 11    |            | IL [A]                | 10.00        |          | tsw.on[ns]  | 175          |          |                                       |       |   |                                                                             |
| 12    | a          | dil [A]               | 1.25         |          | tsw.off[ns] | 35           |          | RI,DC [mOhm]                          | 4.71  |   |                                                                             |
| 13    |            | lmax [A]              | 11.25        | 8        |             |              |          | PI,AC [mOhm]                          | 10.05 |   |                                                                             |
| 14    | ă          | lmin [A]              | 8.75         | S S      | Prr         | 1.16         | ø        | Pl,copper                             | 0.48  |   |                                                                             |
| 15    |            | lirms [A]             | 10.03        | Ē        | Pq1,ov      | 1.18         | 88       | Pl,core                               | 0.06  |   | Wire signifiantly thicker than one skin depth, AC losses may be significant |
| 16    | ă          | lrip,rms [A]          | 0.72         | L L      | Pq2,bd      | 0.32         | ĕ        | PL [W]                                | 0.54  |   |                                                                             |
| 17    | 3          | lq1rms[A]             | 7.09         | ĕ        | Pq1,Coss    | 0.00         | <u>a</u> | Pq1[W]                                | 2.46  |   |                                                                             |
| 18    |            | lq2rms [A]            | 7.09         |          | Pq1,Cond    | 0.12         | ₽        | Pq2[V]                                | 0.44  |   |                                                                             |
| 19    |            | Ierms [A]             | 5.03         |          | Pq2,Cond    | 0.12         |          |                                       | 0.44  |   |                                                                             |
| 20    |            |                       | 10           |          |             |              |          | Ploss                                 | 3.44  |   |                                                                             |
| 21    |            | Inductor              | 20           |          | MORET       | -            |          | F41                                   | 99.64 | _ |                                                                             |
| 22    |            | n                     |              | 500      | Peo (mOhm   | 23           |          | Eu                                    | 30.04 |   |                                                                             |
| 2.3   |            | Core                  | FTD49 - 3C90 | 200      | CateC1      | . 2.0<br>210 |          |                                       |       |   | Ilso at spraadshaat                                                         |
| 25    | 2          | Ac [mm2]              | 211          |          | VENA        | 210          |          | Bib (K/M)                             | 3     |   | <sup>o</sup> 030 01 3010000000000000000000000000000                         |
| 26    | ore metric | Wa[mm2]               | 273          |          | Orr InCl    | 287          |          |                                       | 0     |   |                                                                             |
| 27    | ŏ          | Ve [mm3]              | 24000        |          | Coss [pF]   | 4000         |          | TQ1/C1                                | 32.4  |   |                                                                             |
| 28    | e          | MLT (mm)              | 85           |          | trr [ns]    | 100          |          | T 02 (C)                              | 26.3  |   | nermits simple iteration                                                    |
| 29    |            |                       |              |          |             |              | Of Your  |                                       |       |   | permits simple iteration                                                    |
| 30    |            | ui                    | 2300         |          | C[uF]       | 31.25        |          |                                       |       |   |                                                                             |
| 31    |            | Bsat [mT]             | 470          |          |             |              | Desgin G | G 16.64                               |       |   | ofdocian                                                                    |
| 32    |            | Cm                    | 0.0032       |          |             |              |          |                                       |       |   | OI GESISTI                                                                  |
| 33    | ate        | ×                     | 1.46         |          |             |              |          |                                       |       |   |                                                                             |
| 34    | 2 5        | У                     | 2.75         |          |             |              |          |                                       |       |   |                                                                             |
| 35    | Š 🛾        | ct2                   | 0.000165     |          |             |              |          |                                       |       |   | Can pacily change core                                                      |
| 36    | Ŭ          | ct I                  | 0.031        |          |             |              |          |                                       |       |   | Call cashy change core,                                                     |
| 37    |            | CtU                   | 2.43         |          |             |              |          |                                       |       |   |                                                                             |
| 38    |            | DoltoB [T]            | 0.05         |          |             |              |          |                                       |       |   |                                                                             |
| 39    | <u></u>    | Bmax [mT]             | 0.05         |          |             |              |          |                                       |       |   | SWITCHING TREALIENCY LOSS                                                   |
| 41    | ě          |                       | 0.95         |          |             |              |          |                                       |       |   |                                                                             |
| 42    | , t        | Aw [mm <sup>2</sup> ] | 9.1          |          |             |              |          |                                       |       |   |                                                                             |
| 43    |            | rw [mm]               | 1.70         |          |             |              |          |                                       |       |   | constraints ato                                                             |
| 44    | ž          | Skin Depth [          | 0.46         |          |             |              |          |                                       |       |   |                                                                             |
| 45    |            |                       |              |          |             |              |          |                                       |       |   |                                                                             |
|       |            |                       |              |          |             |              |          |                                       |       |   |                                                                             |



## Matlab (Programmatic) Design

```
function [n, 1g, Pq1, Pq2, P1, eta, Cmin ] = TestBoostDesign(Pmax, fs, L, dt, core geom, core mat, MOSFET)
1
     STestBoostDesign calculate boost conveter efficiency and temperature rise
 2
 3
       %for various designs
       % fs = switching frequency (in Hz)
       % L = inductance (in Henries)
       % n = number of turns on inductor
       % dt = switching dead time (in seconds)
       % core geom = core geometry, chosen from 'EFD25', 'ETD29', 'ETD39', 'ETD44', or 'ETD49'
 8
       % core mat = core material, chosen from '3F3', '3C90', or '3F4'
 9
       S MOSFET = MOSFET selection, chosen from 'AOT', 'FDP', 'IPP2', 'IRF',
10
11
      -% 'CSD' or 'IPPO'
12

    Matlab, or similar, permits

13 -
       Vg = 25;
14 -
      Vout = 50;
                                                      more powerful iteration and
15 -
      Iout = Pmax/Vout;
16 -
      Ts = 1/fs;
                                                      plotting/insight into design
17 -
      D = 1 - V \alpha / V out;
18 -
      dVout = 2;
19 -
      Vdr = 12;
                                                      variation
20
21 -
       Rgon = 10;
22 -
       Rgoff = 2;
23
24 -
       rho = 1.724e-6; %ohms*cm
25 -
      -u0 = 4*pi*1e-7;
26
27
     - %% Inductor Datasheet Parameters
28 -
     E switch core geom
29 -
     case 'EFD25'
30 -
              MLT = 46.4; %mm
31 -
              Ac = 58; %mm^2
32 -
              Ve = 3300; %mm^3
33 -
              Wa = 40.2; %mm^2
```



## **Closed-Form Design Methods**

- Fundamentals of Power Electronics Ch 13-15
  - Step-by-Step design methods
  - Simplified, and may require additional calculations



# K<sub>g</sub> and K<sub>gfe</sub> Methods

- Two closed-form methods to solve for the optimal inductor design *under certain constraints/assumptions*
- Neither method considers losses other than DC copper and (possibly) steinmetz core loss
- Both methods particularly well suited to spreadsheet/iterative design procedures

|                  | K <sub>g</sub>           | K <sub>gfe</sub>                          |
|------------------|--------------------------|-------------------------------------------|
| Losses           | DC Copper<br>(specified) | DC Copper,<br>SE Core Loss<br>(optimized) |
| Saturation       | Specified                | Checked After                             |
| B <sub>max</sub> | Specified                | Optimized                                 |



# K<sub>g</sub> Method

- Method useful for filter inductors where  $\Delta B$  is small
- Core loss is not included, but may be significant particularly if large ripple is present
- Copper loss is specified through a set target resistance
- The desired  $B_{max}$  is given as a constraint
- Method does not check feasibility of design; must ensure that air gap is not extremely large or wire size excessively small
- Simple first-cut design technique; useful for determining approximate core size required
- Step-by-step design procedure included on website



The following quantities are specified, using the units  
Vire resistivity 
$$\rho$$
 (Q-cm)  
Peak winding current  $I_{max}$  (A)  
nductance  $L$  (H)  
Vinding resistance  $R$  (Q)  
Vinding fill factor  $K_u$   
Core maximum flux density  $B_{max}$  (T)  
The core dimensions are expressed in cm:  
Core cross-sectional area  $A_c$  (cm<sup>2</sup>)  
Core window area  $W_A$  (cm<sup>2</sup>)  
Mean length per turn  $MLT$  (cm)  
 $M_{max} = \frac{LI_{max}}{R} 10^4$   
 $A_w \le \frac{K_w W_A}{R}$  (cm<sup>2</sup>)  
 $R = \frac{\rho n (MLT)}{A_w}$  (Q)

KNOXVILLE

ſ

# K<sub>gfe</sub> Method

- Method useful for cases when core loss and copper loss are expected to be significant
- Saturation is not included in the method, rather it must be checked afterward
- Enforces a design where the sum of core and copper is minimized



# *K<sub>gfe</sub>* **Procedure**

| The following quantities are specifi  | ed, using the units no   | ted:              |
|---------------------------------------|--------------------------|-------------------|
| Wire effective resistivity            | ρ                        | $(\Omega$ -cm)    |
| Total rms winding current, ref to pri | $I_{tot}$                | (A)               |
| Desired turns ratios                  | $n_2/n_1, n_3/n_1,$ etc. |                   |
| Applied pri volt-sec                  | $\lambda_1^2$            | (V-sec)           |
| Allowed total power dissipation       | $P_{tot}$                | (W)               |
| Winding fill factor                   | $K_{\mu}$                |                   |
| Core loss exponent                    | β                        |                   |
| Core loss coefficient                 | $K_{fe}$                 | $(W/cm^3T^\beta)$ |
| Other quantities and their dimension  | ons:                     |                   |
| Core cross-sectional area             | $A_{c}$                  | $(cm^2)$          |
| Core window area                      | Ŵ <sub>A</sub>           | $(cm^2)$          |
| Mean length per turn                  | MLT                      | (cm)              |
| Magnetic path length                  | $\ell_e$                 | (cm)              |
| Wire areas                            | $A_{w1},$                | $(cm^2)$          |
| Peak ac flux density                  | $\Delta B$               | (T)               |



$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u (P_{tot})^{((\beta+2)/\beta)}} 10^8$$

$$\Delta B = \left[ 10^8 \frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \frac{(MLT)}{W_A A_c^3 \ell_m} \frac{1}{\beta K_{fe}} \right]^{\left(\frac{1}{\beta+2}\right)}$$

$$n_1 = \frac{\lambda_1}{2\Delta B A_c} 10^4 \qquad n_k = n_1 \frac{n_k}{n_1}$$

$$\alpha_k = \frac{n_k I_k}{n_1 I_{tot}} \qquad A_{wk} \le \frac{\alpha_2 K_u W_A}{n_2}$$
Verify

# *K<sub>gfe</sub>* Method: Summary

- Method enforces an operating ΔB in which core and copper losses are minimized
- Only takes into account losses from standard Steinmetz equation; not correct unless waveforms are sinusoidal
- Does not consider high frequency losses
- Step-by-step design procedure included on website

