POWER CONVERTER LAYOUT

Power Converter Layout: Buck Example

Use loop analysis

- switched input current i₁(t) contains large high frequency harmonics
- —hence inductance of input loop is critical
- inductance causes ringing, voltage spikes, switching loss, generation of B- and Efields, radiated EMI
- the second loop contains a filter inductor, and hence its current i₂(t) is nearly dc
- —hence additional inductance is not a significant problem in the second loop

Parasitic Wire Inductances

Parasitic inductances of input loop explicitly shown:

Addition of bypass capacitor confines the pulsating current to a smaller loop:

high frequency currents are shunted through capacitor instead of input source

Loop Minimization

Even better: minimize area of the high frequency loop, thereby minimizing its inductance

Effect of Loop Inductance

