Course Info

- Course focuses on design an modeling of "high frequency" power electronics
 - Course website: http://web.eecs.utk.edu/~dcostine/ECE581
 - Goal of course is understanding of motivations and issues with high frequency power electronics; analysis and design techniques; applications
- Prerequisites: undergraduate Circuits sequence,
 Microelectronics, ECE 481 Power Electronics, or equivalent

Contact Info

Instructor: Daniel Costinett

• Office: MK504

• Office Hours: W 3-4pm, R 10-11am

• E-mail: Daniel.Costinett@utk.edu

- Email questions will be answered within 24 hours (excluding weekends)
- Please use [ECE 581] in the subject line

Course Structure

- Course meets MWF 9:15-10:05 am
- Plan to spend ~9 hours per week on course outside of lectures
- Grading:
 - Homework/Lab: 40%
 - One homework per week
 - · Assignments due on Fridays unless otherwise noted on course website
 - Midterm: 25%
 - Tentatively scheduled for October 29th
 - Final: 35%

Assignments

- Assignments due at the start of lecture on the day indicated on the course schedule
- All assignments submitted through canvas
 - https://utk.instructure.com/courses/104569
- No late work will be accepted except in cases of documented medical emergences
- Collaboration is encouraged on all assignments except exams; Turn in your own work
- All work to be turned in through canvas

Textbook and Materials

The textbook

R.Erickson, D.Maksimovic, *Fundamentals of Power Electronics*, Springer 2001

will cover some of chapters 19-20 and reference materials from prior chapters. The textbook is available on-line from campus network. Purchase is not required for this course.

- MATLAB/Simulink, LTSpice will be used; All installed in the Tesla Lab
- Lecture slides and notes, additional course materials, homework, due dates, etc. posted on the course website
- Additional information on course website

Online Tools

- Zoom
 - https://tennessee.zoom.us/j/94031104264
 - All lectures will be livestreamed and recorded through the same zoom meeting
- Slack
 - https://curenterc.slack.com/archives/G019PH31YP2
 - Peer collaboration, and instructor-student communication
- Canvas
 - https://utk.instructure.com/courses/104569
 - Submission of all assignments
- Slido
 - https://app.sli.do/event/lhsyh9vk/live/questions
 - Anonymous feedback / Q&A during lectures

Office Hours

- In-person office hours not permitted
- Scheduled office hours are times of maximum availability
- Contact me by e-mail, slack to start a telecon
- Outside of office hours, I will respond within
 24 hours to e-mail or slack messages

TINY BOX CHALLENGE

- Design competition to build and test an "optimized" dc-dc converter
 - Fall '16 60-to-12V, 60W
 - Fall '18 48-to-1.2V, 12W
- Format and feasibility TBD due to labwork requirement
 - Usually ~October-November
 - Usually in groups of 2-3

Pandemic Planning

Discussion

Introduction

- Why high frequency?
 - Power Density
 - Control Bandwidth
- Techniques
 - Devices
 - Control
 - Topologies
 - Passives

Voltage Regulation Module

Motivating Example

AVL

12V/48V Electrical Architecture

AVL UK Expo 2014 / Ulf Stenzel

Baseline Design

• Use TI WebBench (webench.ti.com) to get a baseline design

LTSpice Simulation

L	Cout	f_s	Diode	η (Sim)
22uH	22uF	202k	Si (FR)	93.9%

LTSpice Simulation

THE UNIVERSITY OF TENNESSEE

Switching Transition

Diode Reverse Recovery

Datasheet RR Characteristics

Fig. 10 - Typical Stored Charge vs. dl_F/dt

Fig. 9 - Typical Reverse Recovery Time vs. dl_F/dt

Charge Storage

IGBT Current Tailing

Schottky Diode

L	C _{out}	f_s	Diode	η (Sim)
22uH	22uF	202k	Si (FR)	93.9%
22uH	22uF	202k	Si Schottky	95.8%

