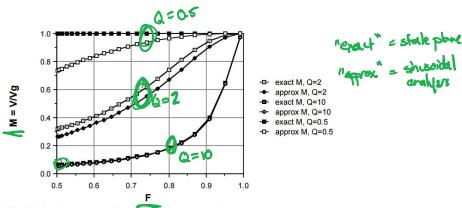
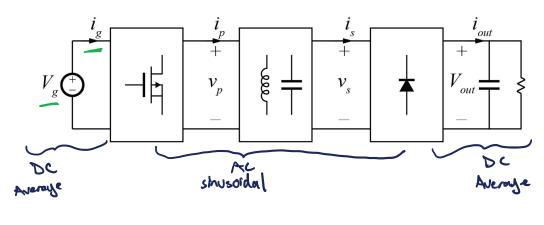
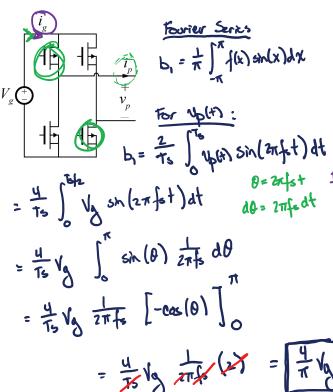
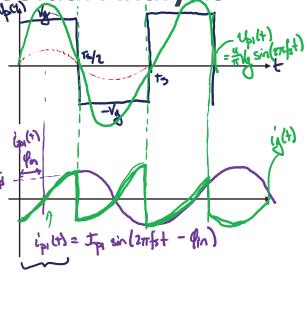


Sinusoidal Analysis: Comments

- Generally most accurate when operating near resonance with a high ${\cal Q}$
- Effective quality factor \mathcal{Q}_e depends not only on resonant tank, but also on loading
- Analysis neglects switching intervals; can only predict where ZVS cannot be obtained


Fig. 2.14. Comparison of exact and approximate series resonant converter characteristics, below resonance.


AC Link Waveforms

THE UNIVERSITY OF TENNESSEE 1

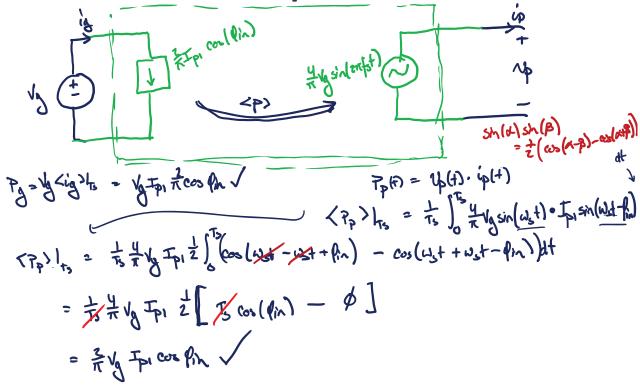
Switch Network Sinusoidal Analysis

Input Current

$$\begin{aligned} \langle ig \rangle \big|_{TS} &= \frac{2}{T_S} \int_0^{T_S/2} ip_1 di dt \\ &= \frac{2}{T_S} Ip_1 \int_0^{T_S/2} ip_1 dt dt \\ &= \frac{2}{T_S} Ip_1 \int_0^{T_S$$

$$\beta = 2\pi f + 9in$$
 $d\theta = 2\pi f dt$

$$= \frac{2}{T_s} I_{pl} \int_{-din}^{\pi - din} \frac{1}{2\pi f_s} d\theta$$


$$= \frac{2}{T_s} I_{pl} \frac{1}{2\pi f_s} \left[-\cos \theta \right]_{-din}^{\pi - f_{in}}$$

$$= \frac{2}{T_s} I_{pl} \frac{1}{2\pi f_s} \left[2\cos f_{in} \right]$$

$$\langle ig \rangle |_{To} = \frac{2}{\pi} I_{Pi} \cos(pin)$$

TENNESSEE 1

Switch Network Equivalent Circuit

