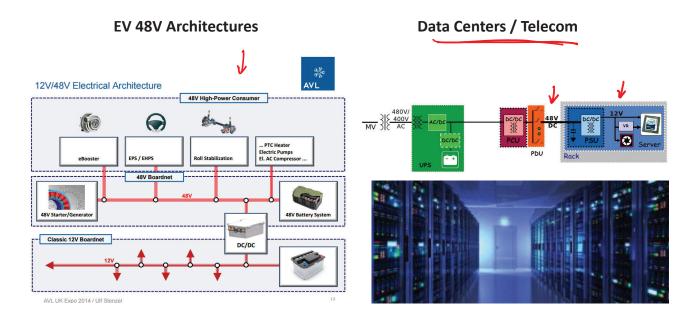


Series Resonant Tank

TINY BOX CHALLENGE

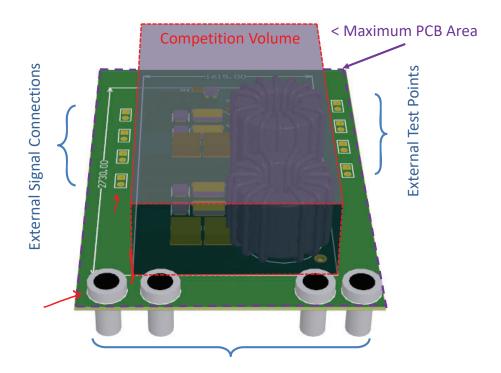
Competition Specifications


The winning converter will be the unit which achieves the <u>highest power density</u>, i.e. fits in the smallest rectangular volume, while meeting the following specifications.

Parameter	Requirement	Comment
Voltage Input	48 Vdc	
Maximum Output Power	36 W	
Output Voltage	\rightarrow 12 ± 0.1 Vdc	
Output Ripple Voltage	< 1%	Measured as $V_{pk,pk}/V_{avg}$ from the DC supply, in steady state, at full output power
TPE Efficiency	→ >95%	Measured using TPE method ¹
No-load Power Loss	< 2W	Measured with load disconnected, but output voltage within specified range
Volume	$< 3.6 \text{ in}^3$	Volume of minimum rectangle enclosing power stage

¹Tennessee Power Electronics (TPE) efficiency is a weighted power efficiency defined as:

$$\eta_{TPEF} = 0.1 \eta_{P_{out} = 0.25 \cdot P_{max}} + 0.15 \eta_{P_{out} = 0.5 \cdot P_{max}} + 0.25 \eta_{P_{out} = 0.75 \cdot P_{max}} + 0.5 \eta_{P_{out} = P_{max}}$$


Example Applications

NXP Semi, "Semiconductors – enablers of future mobility concepts", 2011 Audi, "Electric biturbo and hybridization", 2014 AVI. "48V Mild Hybrid Systoms".

How Volume is Measured

External Power Connections

Additional Details

- Full competition specifications and example testing report on course webpage
- No regulation requirements
- Deliverables:
- Written design comparison of 3 topologies (10/30)
 - PCB Layout of single design (11/13)*
 - Testing Report of prototype (12/9)**

Pandemic Modifications

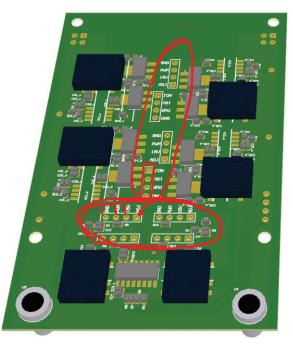
- Traditionally, ECE 581 has experimental testing of converter (in groups of 2-3) and Final written Exam
- This semester, you may
 - Prototype and test converter design (individual)

- or -

- Take final written exam
- Everyone must complete the initial design comparison report and "block" PCB layout

Design and Comparison Report (10/30)

- 1. Select three topologies from the table and compare based on
 - I. Efficiency at full power
 - II. Power loss at zero load
 - III. Output voltage ripple
 - IV. Volume of main passive components


	Class I	Class II	Class III	Class IV
Definition	Two-switch PWM topologies*	Isolated variants of PWM topologies	AC-link topologies	Any topology not conforming to Class I-III
Examples	Buck, Boost, Buck- Boost, Cuk, SEPIC, etc.	Flyback, Forward, push-pull, half- bridge, full-bridge	DAB, DAHB, SRC, LLC, Full Bridge, etc.	Switched capacitor, sigma-delta, multilevel, etc.
Required number				

^{*}you may **not** use a hard-switched variant of a Class I topology

- 2. Select (and justify) one topology, and provide a complete design including (but not limited to)
 - Power Devices
 - II. Gate Driver Circuitry
 - III. Passive Devices and implementation
 - IV. Switching Frequency

Modulation Signal Board

- FPGA + PWM isolation
 - 4 low-side (common ground)
 - 4 high-side (isolated grounds)
- Reference code to generate open-loop PWM signals
- Layout in Altium starter package on course website