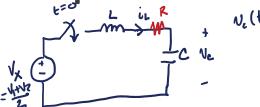

Capacitor Charging: Current Source

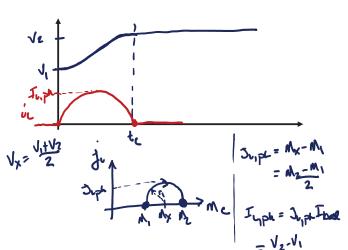


THE UNIVERSITY OF TENNESSEE

Voltage source case:
$$\overline{E}_{bes} = \frac{1}{2}C(V_2 - V_1)^2$$

Current source case: $\overline{E}_{bes} = \frac{1}{2}C(V_2 - V_1)^2$
 $\overline{E}_{bes} = \frac{1}{2}C(V_2$

Capacitor Charging: Resonant



High-efficiency approx: assume 12=0

$$E_{loss} = I_{crms} Rtc = \frac{I_{cph}^2}{2} Rtc$$

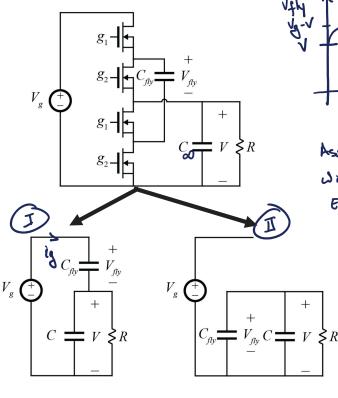
$$= \left(\frac{V_2 - V_1}{2 R_0}\right)^2 \frac{R t_2}{2} = \frac{\left(V_2 - V_1\right)^2}{4 R_0^2} \frac{R \pi}{7 \omega_0}$$

$$E_{locs} = \frac{(V_2 - V_1)^2}{4 R_0} \frac{RC\pi}{2}$$

THE UNIVERSITY OF TENNESSEE

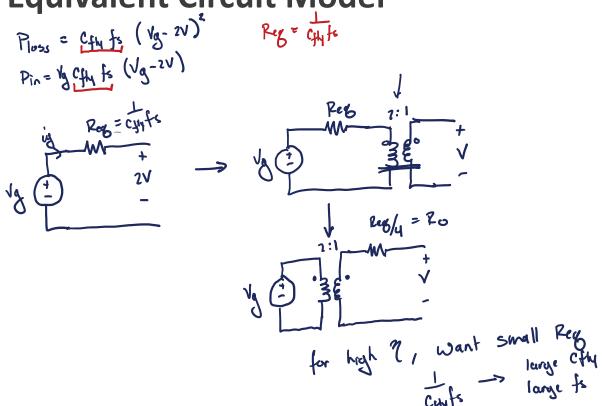
Eloss =
$$\frac{1}{2}C(V_2-V_1)^2\frac{Rn}{uRo}$$
 $\frac{R}{Ro}$ \Rightarrow small for high-cd resonance $Rossin V$ -src case $Rossin V$ \Rightarrow $Rossin$

Comparison of Capacitor Charging


charged from VI to V2 in time te for capaciter

$$\frac{\overline{U} \log S}{\frac{1}{2}C(V_2-V_1)^2}$$

Resonant


2:1 SC Revisited

Assume to >> RC = T With finite Cfty V 2 Vg-V

Everyll Loss: \(\Pi \) \frac{1}{2} Cfty \(\sqrt{1 - \s

Equivalent Circuit Model

