Announcements

e HW9 posted

e PCBs ordered for all planning to complete the
design challenge

* TNvoice available
— https://utk.campuslabs.com/eval-home/

— Currently, 1/6 completed
— Closes 12/1

The Averaged System

This equation is now the model of a new, equivalent
linear system

x(t) = Ax(t) + Bu(t)
where

A=DA;+ D'A,
B=DB;+ D'B,
which has averaged behavior over one switching
period
This approximation is perhaps valid, if
— State waveforms are dominantly linear
— Dynamics of interest are at f},, < f;




Buck State Space Averaging
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Buck Averaged Model

So, our average model is

(x(t)) = (DA1 + D'Az){x(t)) + (DB + D'Bp)(u(t))
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Averaging: Discussion
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Averaging removes
switching frequency
ripple and harmonics
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Discrete Time Nature of PWM
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Discrete Time Nature of PWM
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Historical Perspective

Robert D Middlebrook
PhD, Standford, 1955
CalTech Professor, 1955-1998

v
Slobodan Cuk Dennis John Packard
PhD CalTech, 1976 PhD, CalTech 1976
CalTech Prof, 1977-1999
Modelling, analysis, and design of Discrete modeling and analysis of
switching converters switching regulators
Model a switched system as an Model a switched system as a discrete-time
averaged, time-invariant system with system with
x(t) = Ax(t) + Bu(t) x[n+ 1] = ®x[n] + PU[n]
where where
A=DA;+D'A
1 2 b = (H}:nsw eAL'ti)

B=DB,+D'B .
o w = YTt eAkti)a, " (eAiti — I)B,)
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Large Signal Modeling of SMPS
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Discrete Time Modeling

* Every subcircuit is a passive, linear circuit

e Passive, linear circuits can be solved in closed-

form

— Can model states at discrete times without
averaging

* Only assumptions required
— Independent inputs are DC or slowly varying

Solution to State Space Equation

Closed form solution to state space equation
x(t) = Ax(t) + Bu(t)

Multiply both sides by e =4t

e Atx(t) — e M Ax(t) = e A Bu(t)

Left-hand side is

%(e“‘”x(t}) = e A Bu(t)




Solution to State Space Equation

%(e“‘“x(t)) = e By (t)

Can now be solved by direct integration
t

e Atx(t) — x(0) = j e A"Bu(t) dr
0

Rearranging M:‘\ resgore t lﬁmut Foypang €
x(t) = e4tx(0) + j e At=DBu(r) dr
0 \._/\f_\/

convolubom T :\\48;‘1

Matrix Exponential

Matrix exponential defined by Taylor series expansion
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Well-known issue with convergence in many cases
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C. Moler and C. V. Loan, “Nineteen dubious ways to compute the exponential of a matrix,” SIAM Review, vol. 20, pp.
801-836, 1978.




Properties of the Matrix Exponential

* Matrix exponential always exists
— i.e. summation will always converge

* Exponential of any matrix is always invertible,
with

First Order Taylor Series Expansion

Linear ripple approximation
b~ |+ At

- e A () B (1)

* "_'J'
27 A (x(0)+B u(t)

x() ¥
x,(1)

)7, (n+i))TS (n+1)T, !
Valid only if switching frequency much faster
than system modes




Simplification for Slow-Varying Inputs

:
x(t) = eAtx(0) + ] e A-DBy(7) dr
0

If Ais invertible and u(7) =~

x(t) = ex(0) + A 1 (e4* — DBU

Application to Switching Converter

x(DT)
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Application to Switching Converter

A x(1)+Bu(?)
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w(DTy)i = eA1DTsx (0)1+ A, "1 (eM1PTs — B, U




Application to Switching Converter

t i J t
(W1, (+D)T, (1T,

x(DTy) = eA1PTsx(0) + A, (eA1PTs — DB, U

Application to Switching Converter
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General Form

Generally, for ng,, separate switching positions

1 Ngw i+1
x(T,) = 1_[ Att x(0)+z 1_[ edktk | 4,7 (et — B, U
[=Nsw k=nsw
N \/—\/\f

Equation is in the Porm of a discrete-time system with <
x[n+1] = ®x[n] + PU[n] & LTE_ BT sydun
Again, the effect of changing modulation (i.e. t;) is hidden in nonlinear terms
x[n + 1] = ®x[n] + Pii[n] + I'd[n]

Find I' by small-signal modeling
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Aside: Comparison to Averaged Modeling

1 New i+1
x(T,) = 1_[ At x(0)+z 1_[ et | 4,7V (eAiti — 1B, VU
=gy i=1 k=ng,, —)
Approximate W|th\s;a\|§hne waveforms, eA\‘im >
1 Ngw i+1 v
x(T) =1+ Z At + - x(0)+z I+ z Apty + - |6;B; VU
i=ngy k=ngy

Neglect all terms with product of two ore more t;

x(T,) = <I+ZA t)x(O)+Z(tBl)U

ove 1|=0/VWM‘

Continuous time conversion /-___/\/\
T,) — x(0 Nsw
xpr(t) = —x( )T 0 z< ) + z< )

1=
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Aside: Discrete vs Averaged Modeling

So, averaged and discrete time formulations are
equivalent if

— Ripple in states is
1. Dominantly straight-line, so editi ~ (I + A;t;)
2. Low frequency, such that t;t; < ||Al-Aj||
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