Announcements

- PCBs ordered
- EECS ordering will contact you directly when parts/PCBs arrive
- FPGA / Interface boards will be made available today
- May require some population/testing
- TNvoice available
- https://utk.campuslabs.com/eval-home/
- Currently, 2/6 completed
- Closes 12/1

Remaining Tasks

- TNVoice anonymous eval due 12/1
- Track I: PCB Testing
- Final testing report due 12/9
- Format template available on website
- short additional narrative if results do not correspond to predictions
- Track II: Final Exam
- Posted 11/30, Due 12/9
- Same rules/format as midterm exam
- Comprehensive, covering all course material

Historical Perspective

Modelling, analysis, and design of switching converters

Model a switched system as an averaged, time-invariant system with

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} u(t)
$$

where

$$
\begin{aligned}
& \boldsymbol{A}=D \boldsymbol{A}_{\mathbf{1}}+D^{\prime} \boldsymbol{A}_{\mathbf{2}} \\
& \boldsymbol{B}=D \boldsymbol{B}_{\mathbf{1}}+D^{\prime} \boldsymbol{B}_{\mathbf{2}}
\end{aligned}
$$

Robert D Middlebrook
PhD, Standford, 1955
CalTech Professor, 1955-1998

- \downarrow

Dennis John Packard PhD, CalTech 1976

Discrete modeling and analysis of

 switching regulatorsModel a switched system as a discrete-time system with

$$
\boldsymbol{x}[n+1]=\boldsymbol{\Phi} \boldsymbol{x}[n]+\boldsymbol{\Psi} U[n]
$$

where

$$
\begin{gathered}
\boldsymbol{\Phi}=\left(\prod_{i=n_{s w}}^{1} e^{\boldsymbol{A}_{i} t_{i}}\right) \\
\boldsymbol{\Psi}=\sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{\boldsymbol{A}_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\}
\end{gathered}
$$

Application to Switching Converter

$$
\begin{aligned}
& \boldsymbol{x}\left(D T_{S}\right)=e^{\boldsymbol{A}_{1} D T_{s}} \boldsymbol{x}(0)+\boldsymbol{A}_{1}^{-1}\left(e^{\boldsymbol{A}_{1} D T_{S}}-\boldsymbol{I}\right) \boldsymbol{B}_{1} U \\
& \boldsymbol{x}\left(T_{S}\right)=e^{\boldsymbol{A}_{2} D^{\prime} T_{S}} \boldsymbol{x}\left(D T_{s}\right)+\boldsymbol{A}_{2}^{-1}\left(e^{\boldsymbol{A}_{2} D^{\prime} T_{S}}-\boldsymbol{I}\right) \boldsymbol{B}_{2} U
\end{aligned}
$$

$\underset{\sim}{x}\left(T_{S}\right)=e^{\boldsymbol{A}_{2} D^{\prime} T_{S}} e^{\boldsymbol{A}_{1} D T_{s} \boldsymbol{x}(0) \boldsymbol{0}}+\boldsymbol{A}_{2}^{-1}\left(e^{\boldsymbol{A}_{2} D^{\prime} T_{S}}-\boldsymbol{I}\right) \boldsymbol{B}_{2} U+e^{\boldsymbol{A}_{2} D^{\prime} T_{S}} \boldsymbol{A}_{1}^{-1}\left(e^{\boldsymbol{A}_{1} D T_{S}}-\boldsymbol{I}\right) \boldsymbol{B}_{1} U$

General Form

Generally, for $n_{s w}$ separate switching positions

$$
\boldsymbol{x}\left(T_{s}\right)=\underbrace{\left(\prod_{i=n_{s w}}^{\left(e_{\text {orm }}\right.} e^{A_{i} t_{i}}\right.}_{\text {quation is in the }}) \boldsymbol{x}(0)+\sum_{i=1}^{\sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{A_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\} U}
$$

$$
x[n+1]=\boldsymbol{\Phi} \boldsymbol{x}[n]+\boldsymbol{\Psi} U[n] \leftarrow \text { LTE DT systen }
$$

Again, the effect of changing modulation (i.e. t_{i}) is hidden in nonlinear terms

$$
\widehat{\boldsymbol{x}}[n+1]=\boldsymbol{\Phi} \widehat{\boldsymbol{x}}[n]+\boldsymbol{\Psi} \hat{u}[n]+\boldsymbol{\Gamma} \hat{d}[n]
$$

Find $\boldsymbol{\Gamma}$ by small-signal modeling

Steady-State Large-Signal Analysis

$$
\boldsymbol{x}\left(T_{s}\right)=\left(\prod_{i=n_{s w}}^{1} e^{\boldsymbol{A}_{i} t_{i}}\right) \boldsymbol{x}(0)+\sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{A_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\} U
$$

In steady-state, $\boldsymbol{x}\left(T_{S}\right)=\boldsymbol{x}(0)$

$$
\boldsymbol{x}\left(T_{s}\right)=\left(I-\prod_{i=n_{s w}}^{1} e^{A_{i} t_{i}}\right)^{-1} \sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{A_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{A_{i} t_{i}}-I\right) \boldsymbol{B}_{i}\right\} U
$$

Gives explicit solution for steady-state operation of any switching circuit

Small Signal Modeling

Small Signal Modeling

Small Signal Modeling

Complete Small Signal Model

This completes the small-signal model

$$
\widehat{\boldsymbol{x}}[n+1]=\boldsymbol{\Phi} \widehat{\boldsymbol{x}}[n]+\boldsymbol{\Psi} \hat{u}[n]+\boldsymbol{\Gamma} \hat{d}[n]
$$

where

$$
x\left(D_{5}\right) \text { in steed }- \text { stank }
$$

$$
\boldsymbol{\Gamma}=e^{\boldsymbol{A}_{2} D^{\prime} T_{s}}\left(\left(\boldsymbol{A}_{1}-\boldsymbol{A}_{2}\right) \boldsymbol{X}_{D}+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{2}\right) U\right) T_{S}
$$

with $\boldsymbol{X}_{D}=\boldsymbol{x}\left(D T_{s}\right)$ in steady-state

Example Results

* Includes $t_{d}=760 \mathrm{~ns}$ of delay in feedback loop

Inclusion of Delay

$$
G_{v u}^{\dagger}(s)=G_{v u}(s) e^{-s t_{d}}
$$

Current Control

Discrete Time Analysis: Results

$$
\boldsymbol{X}_{\boldsymbol{s s}}=\left(I-\prod_{i=n_{s w}}^{1} e^{\boldsymbol{A}_{i} t_{i}}\right)^{-1} \sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{\boldsymbol{A}_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\} U_{i}
$$

- Valid for any switched circuit, as long as

1. Inputs, U, are constant or slowly varying
2. All times t_{i} are known
3. Every subinterval can be described by a linear circuit

- Requires no dedicated analysis other than finding \boldsymbol{A}_{i} and \boldsymbol{B}_{i}
- Decisively not a design-oriented equation

Example: DAB Design Using Dedicated Analysis

- Design of a high step-down DAB for Data Centers
- 150-to-12V, $120 \mathrm{~W}, 1 \mathrm{MHz}$, design
- Prototype achieved 98.4% peak efficiency

DAB Operated at High Frequency

- Resonance between L_{l} and transistor capacitance distorts waveforms
- Resonance may need to be modeled when operating at high frequency

DAB Waveforms

Linear Waveform Approximation

Linear Waveform Approximation

$e^{A_{2} t_{2}}$
$I+A_{2} t_{2}$

$$
\begin{gathered}
e^{A_{3} t_{3}} \\
I+A_{3} t_{3}
\end{gathered}
$$

Second Order Approximation

Second Order Approximation

State Plane Solution

Solution "Read off" state plane

Primary

$J_{2}=\frac{R_{0}}{R_{0}{ }^{\prime}} \sqrt{\left(J_{p} \frac{R_{0}{ }^{\prime}}{R_{0}}\right)^{2}-\left(2 n_{t}\right)^{2}}$
$J=\frac{F}{\pi}\left[2+\frac{1}{4}\left(J_{1}^{2}-J_{2}{ }^{2}\right)+J_{p}\left(\frac{\pi}{F}-\alpha-\beta-\delta\right)\right]$

Secondary

Different Operating Modes

Mode II
Mode III
Mode IV

- As control, input and load vary, operating mode changes
- In each mode, solution is a set of transcendental equations

Different Operating Modes

Model Validation

D Costinett, D. Maksimovic, and R Zane, "Design and Control for High fficiency in High Step-Down Dual Active Bridge Converters THE UNIVERSITY OF
Operating at High Switching Frequency," IEEE Trans. On Pwr. Elec., 2013

Discrete Time Model Validation

Discrete Time Dynamic Model Validation

Different Operating Modes

Different Operating Modes

Mode II
Mode III

Mode IV

$$
\boldsymbol{X}_{\boldsymbol{s s}}=\left(I-\prod_{i=n_{s w}}^{1} e^{\boldsymbol{A}_{i} t_{i}}\right)^{-1} \sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{\boldsymbol{A}_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\} U
$$

Different Topologies

Hybrid Switched-Capacitor

$$
\boldsymbol{X}_{\boldsymbol{s s}}=\left(I-\prod_{i=n_{s w}}^{1} e^{\boldsymbol{A}_{i} t_{i}}\right)^{-1} \sum_{i=1}^{n_{s w}}\left\{\left(\prod_{k=n_{s w}}^{i+1} e^{\boldsymbol{A}_{k} t_{k}}\right) \boldsymbol{A}_{i}^{-1}\left(e^{\boldsymbol{A}_{i} t_{i}}-\boldsymbol{I}\right) \boldsymbol{B}_{i}\right\} U
$$

Numerical Approach: HDSC Example

- 4:1 Hybrid Dickson Switched-Capacitor Converter
- 48-to-5 V, 0-100 A output
- Including $C_{\text {oss }} 13$
states, 3 subintervals

TEM Messigil

Model Validation

- Constructed 8:1 HDSC converter
- Measured 96.7% peak efficiency at 30W

- Model predicts 96.9\% at 30.4 W
- Model includes capacitor ESR

COURSE CONCLUSIONS

HF Power Electronics - When and Why

Thank you for all your hard work, and good luck with finals!

