Announcements

- PCBs ordered
 - EECS ordering will contact you directly when parts/PCBs arrive
 - FPGA / Interface boards will be made available today
 - May require some population/testing
- TNvoice available
 - https://utk.campuslabs.com/eval-home/
 - Currently, 2/6 completed
 - Closes 12/1

Remaining Tasks

- TNVoice anonymous eval due 12/1
- Track I: PCB Testing
 - Final testing report due 12/9
 - Format template available on website
 - short additional narrative if results do not correspond to predictions
- Track II: Final Exam
 - Posted 11/30, Due 12/9
 - Same rules/format as midterm exam
 - Comprehensive, covering all course material

Historical Perspective

Robert D Middlebrook

PhD, Standford, 1955 CalTech Professor, 1955-1998

Slobodan Cúk PhD CalTech, 1976 CalTech Prof, 1977-1999

Modelling, analysis, and design of switching converters

Model a switched system as an averaged, time-invariant system with

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

where

 $A = DA_1 + D'A_2$ $B = DB_1 + D'B_2$

to modeling and analysis of

Dennis John Packard

PhD, CalTech 1976

Discrete modeling and analysis of switching regulators

Model a switched system as a discrete-time system with

$$\boldsymbol{x}[n+1] = \boldsymbol{\Phi}\boldsymbol{x}[n] + \boldsymbol{\Psi}\boldsymbol{U}[n]$$

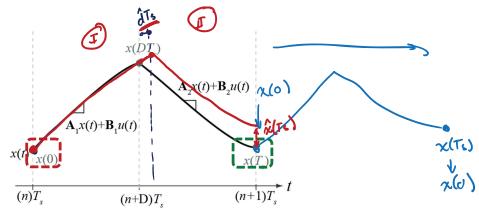
where

$$\boldsymbol{\Phi} = \left(\prod_{i=n_{sw}}^{1} e^{A_{i}t_{i}} \right)$$
$$\boldsymbol{\Psi} = \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{A_{k}t_{k}} \right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\}$$

A. R. Brown and R. D. Middlebrook, "Sampled-data Modeling of Switching Regulators" PESC 1981

TENNESSEE KNOXVILLE

Application to Switching Converter



 $\boldsymbol{x}(DT_{s}) = e^{A_{1}DT_{s}}\boldsymbol{x}(0) + A_{1}^{-1}(e^{A_{1}DT_{s}} - \boldsymbol{I})\boldsymbol{B}_{1}\boldsymbol{U}$

$$\boldsymbol{x}(T_{s}) = e^{A_{2}D'T_{s}}\boldsymbol{x}(DT_{s}) + A_{2}^{-1}(e^{A_{2}D'T_{s}} - \boldsymbol{I})\boldsymbol{B}_{2}\boldsymbol{U}$$

 $\boldsymbol{x}(T_{s}) = e^{A_{2}D'T_{s}}e^{A_{1}DT_{s}}\boldsymbol{x}(0) + A_{2}^{-1}(e^{A_{2}D'T_{s}} - \boldsymbol{I})\boldsymbol{B}_{2}\boldsymbol{U} + e^{A_{2}D'T_{s}}A_{1}^{-1}(e^{A_{1}DT_{s}} - \boldsymbol{I})\boldsymbol{B}_{1}\boldsymbol{U}$

General Form

Generally, for n_{sw} separate switching positions

$$\boldsymbol{x}(T_{s}) = \left(\prod_{i=n_{sw}}^{1} e^{A_{i}t_{i}}\right)\boldsymbol{x}(0) + \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{A_{k}t_{k}}\right)A_{i}^{-1}(e^{A_{i}t_{i}} - I)B_{i} \right\} U$$

Equation is in the form of a discrete-time system with
$$\boldsymbol{x}[n+1] = \boldsymbol{\Phi}\boldsymbol{x}[n] + \boldsymbol{\Psi}\boldsymbol{U}[n] \leftarrow \boldsymbol{LT} \sum \boldsymbol{T} \text{ system}$$

Again, the effect of changing modulation (i.e. t_i) is hidden in nonlinear terms

$$\widehat{\boldsymbol{x}}[n+1] = \boldsymbol{\Phi}\widehat{\boldsymbol{x}}[n] + \boldsymbol{\Psi}\widehat{\boldsymbol{u}}[n] + \boldsymbol{\Gamma}\widehat{\boldsymbol{d}}[n]$$

Find $\boldsymbol{\Gamma}$ by small-signal modeling

TENNESSEE KNOXVILLE

Steady-State Large-Signal Analysis

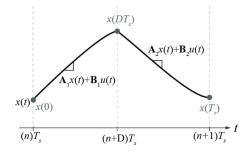
$$\boldsymbol{x}(T_{s}) = \left(\prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right)\boldsymbol{x}(0) + \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

In steady-state, $\mathbf{x}(T_s) = \mathbf{x}(0)$

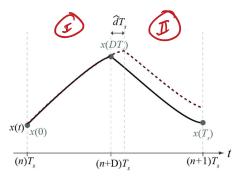
$$\boldsymbol{x}(T_{S}) = \left(I - \prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

Gives explicit solution for steady-state operation of any switching circuit

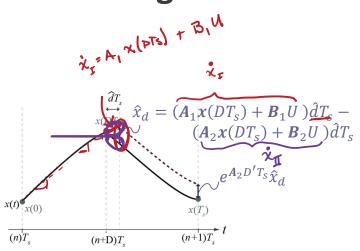
Small Signal Modeling



Small Signal Modeling



Small Signal Modeling



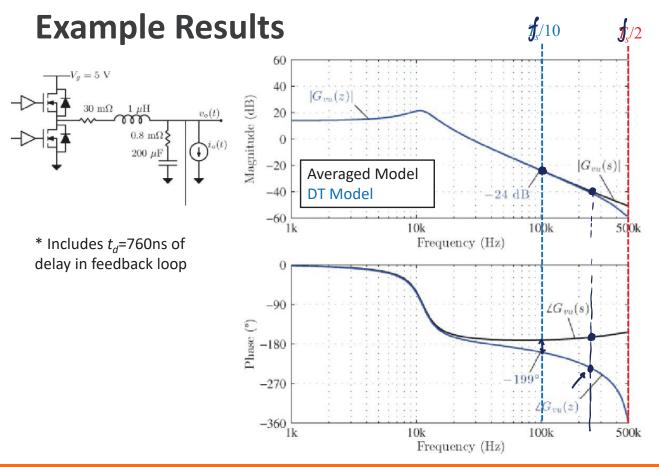
Complete Small Signal Model

This completes the small-signal model

$$\widehat{x}[n+1] = \Phi \widehat{x}[n] + \Psi \widehat{u}[n] + \Gamma \widehat{d}[n]$$
where
$$\chi(\text{pts}) \text{ in steady-shule}$$

$$\boldsymbol{\Gamma} = e^{A_2 D' T_s} \big((A_1 - A_2) \dot{X_D} + (B_1 - B_2) U \big) T_s$$

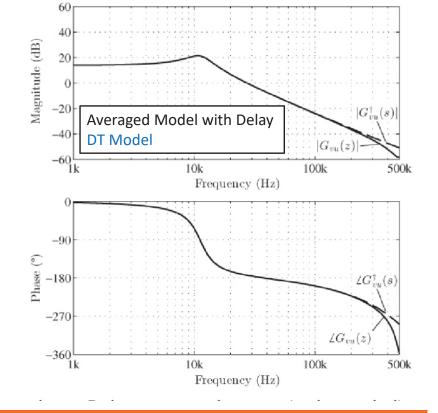
with $X_D = x(DT_s)$ in steady-state



L. Corradini et. al. Digital Control of High Frequency Switched-Mode Power Converters, Section 3.2

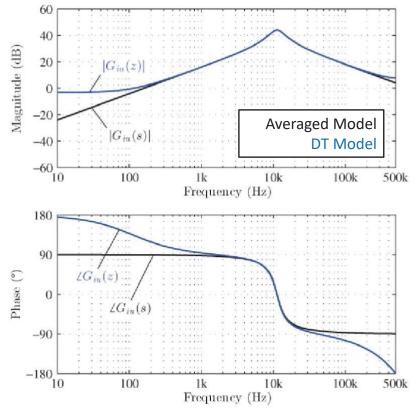
Inclusion of Delay

$$G_{vu}^{\dagger}(s) = G_{vu}(s)e^{-st_d}$$



L. Corradini et. al. Digital Control of High Frequency Switched-Mode Power Converters, Section 3.2

Current Control



L. Corradini et. al. Digital Control of High Frequency Switched-Mode Power Converters, Section 3.2

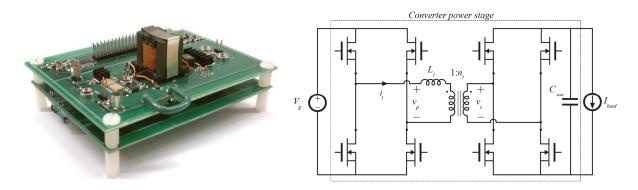
TENNESSEE KNOXVILLE

Discrete Time Analysis: Results

$$X_{ss} = \left(I - \prod_{i=n_{sw}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - I) B_{i} \right\} U_{i}$$

- Valid for any switched circuit, as long as
 - 1. Inputs, U, are constant or slowly varying
 - 2. All times t_i are known
 - 3. Every subinterval can be described by a linear circuit
- Requires no dedicated analysis other than finding $m{A}_i$ and $m{B}_i$
- Decisively not a design-oriented equation

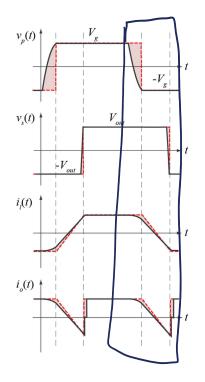
Example: DAB Design Using Dedicated Analysis

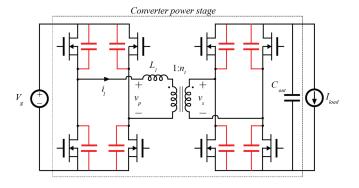


- Design of a high step-down DAB for Data Centers
- 150-to-12V, 120 W, 1MHz, design
- Prototype achieved 98.4% peak efficiency

D Costinett, D. Maksimovic, and R Zane, "Design and Control for High fficiency in High Step-Down Dual Active Bridge Converters Operating at High Switching Frequency," IEEE Trans. On Pwr. Elec., 2013

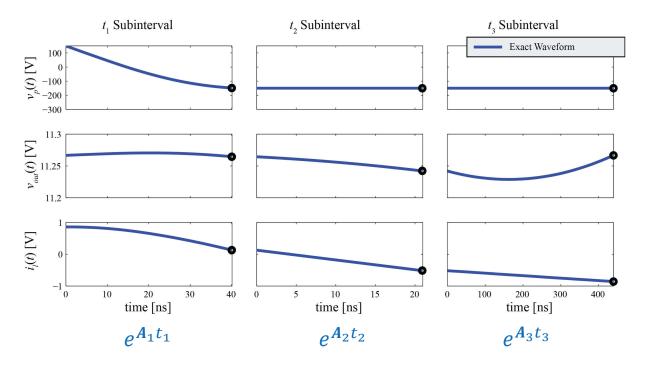
DAB Operated at High Frequency





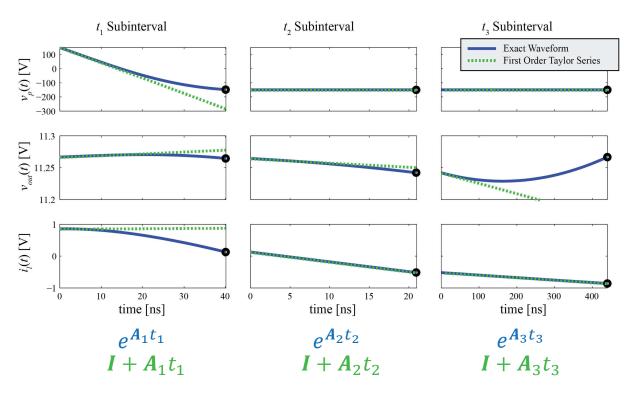
- Resonance between *L_I* and transistor capacitance distorts waveforms
- Resonance *may* need to be modeled when operating at high frequency

DAB Waveforms

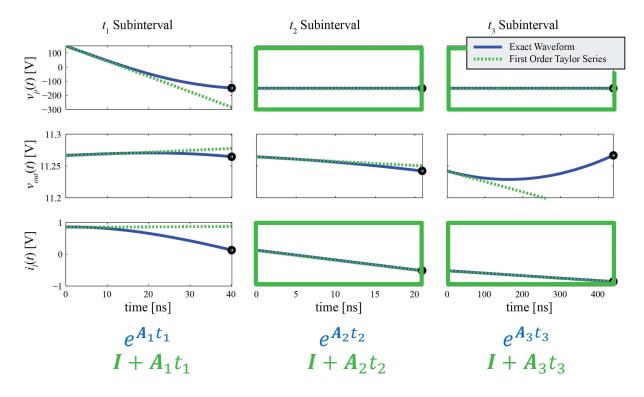


TENNESSEE KNOXVILLE

Linear Waveform Approximation

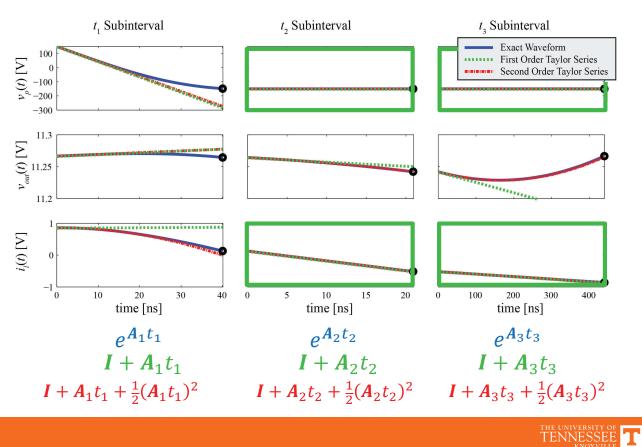


Linear Waveform Approximation

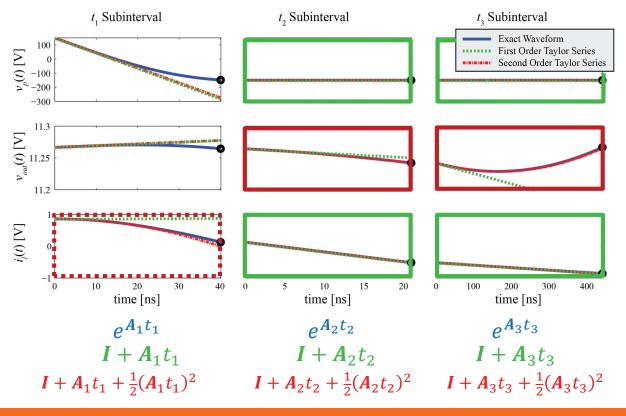


TENNESSEE KNOXVILLE

Second Order Approximation

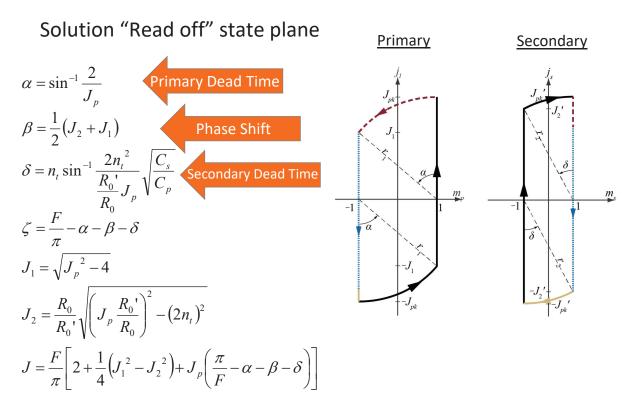


Second Order Approximation

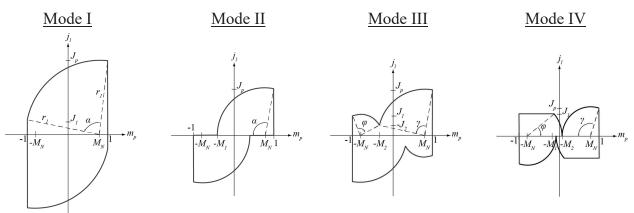


TENNESSEE T

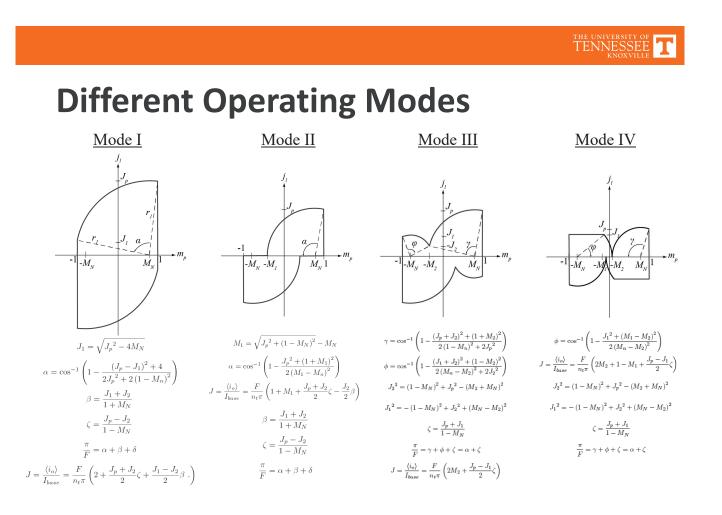
State Plane Solution

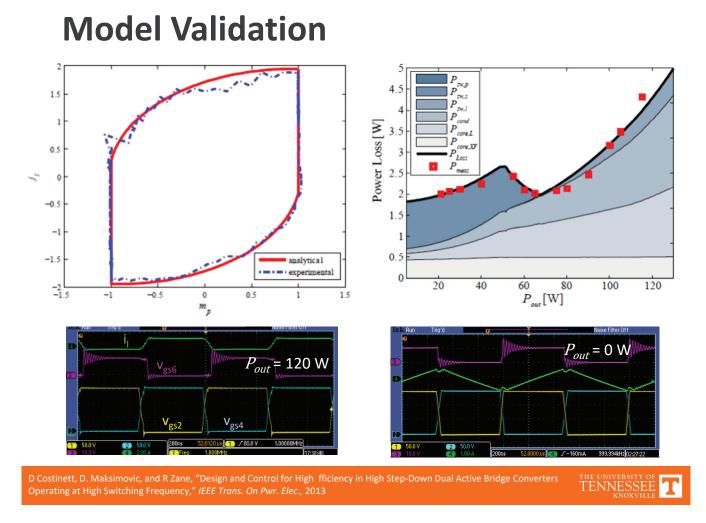


Different Operating Modes

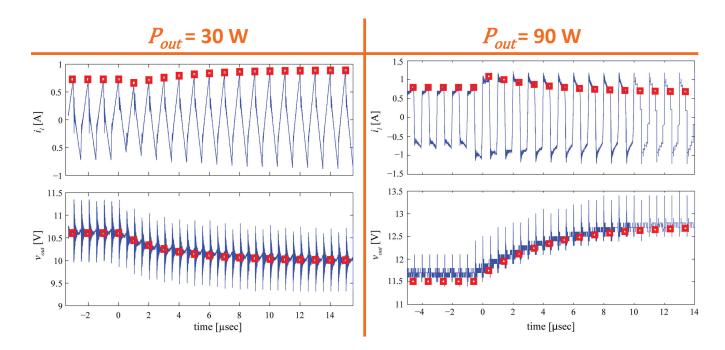


- As control, input and load vary, operating mode changes
- In each mode, solution is a set of transcendental equations





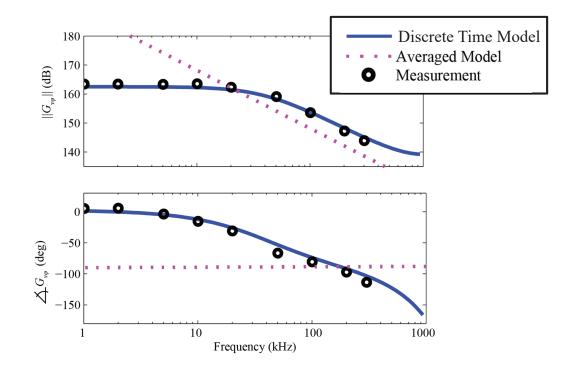
Discrete Time Model Validation



D. Costinett, R. Zane, and D. Maksimovic, "Discrete-time small-signal modeling of a 1 MHz efficiency-optimized dual active bridge converter with varying load," in Proc. IEEE Workshop Contr. Modl. (COMPEL), june 2012, pp. 1–7.

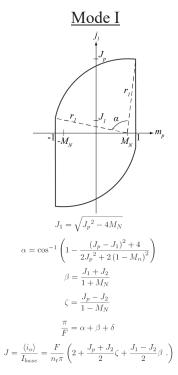
TENNESSEE KNOXVILLE

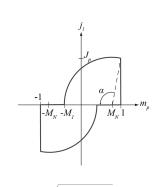
Discrete Time Dynamic Model Validation



D. Costinett, R. Zane, and D. Maksimovic, "Discrete-time small-signal modeling of a 1 MHz efficiency-optimized dual active bridge converter with varying load," in Proc. IEEE Workshop Contr. Modl. (COMPEL), june 2012, pp. 1–7.

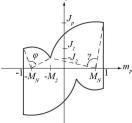
Different Operating Modes





Mode II

$$\begin{split} M_{1} &= \sqrt{J_{p}^{2} + (1 - M_{N})^{2}} - M_{N} \\ \alpha &= \cos^{-1} \left(1 - \frac{J_{p}^{2} + (1 + M_{1})^{2}}{2 (M_{1} - M_{n})^{2}} \right) \\ J &= \frac{\langle i_{o} \rangle}{I_{base}} = \frac{F}{n_{t} \pi} \left(1 + M_{1} + \frac{J_{p} + J_{2}}{2} \zeta - \frac{J_{2}}{2} \beta \right) \\ \beta &= \frac{J_{1} + J_{2}}{1 + M_{N}} \\ \zeta &= \frac{J_{p} - J_{2}}{1 - M_{N}} \\ \frac{\pi}{L} &= \alpha + \beta + \delta \end{split}$$



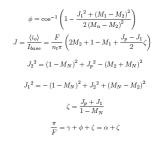
Mode III

$$\begin{split} &\gamma = \cos^{-1} \left(1 - \frac{(J_p + J_2)^2 + (1 + M_2)^2}{2(1 - M_n)^2 + 2J_p^2}\right) \\ &\phi = \cos^{-1} \left(1 - \frac{(J_1 + J_2)^2 + (1 - M_2)^2}{2(M_n - M_2)^2 + 2J_2^2}\right) \\ &J_2^2 = (1 - M_N)^2 + J_p^2 - (M_2 + M_N)^2 \\ &J_1^2 = -(1 - M_N)^2 + J_2^2 + (M_N - M_2)^2 \\ &\zeta = \frac{J_p + J_1}{1 - M_N} \\ &\frac{\pi}{F} = \gamma + \phi + \zeta = \alpha + \zeta \end{split}$$

 $J = \frac{\langle i_o \rangle}{I_e} = \frac{F}{n_e \pi} \left(2M_2 + \frac{J_p - J_1}{2} \zeta \right)$

$$\begin{array}{c} J_{l} \\ J_{p+1} \\ J$$

Mode IV

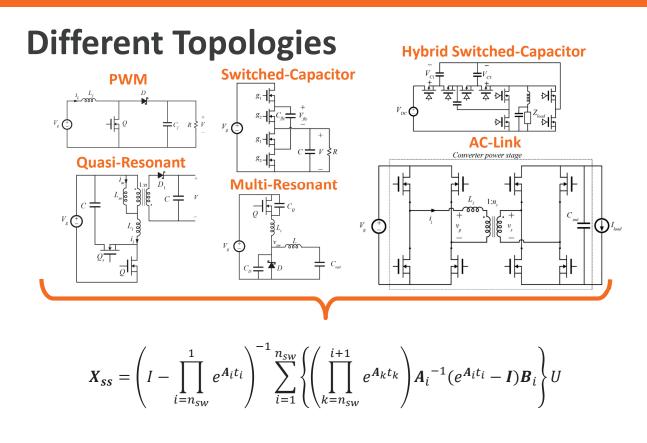


TENNESSEE

Different Operating Modes

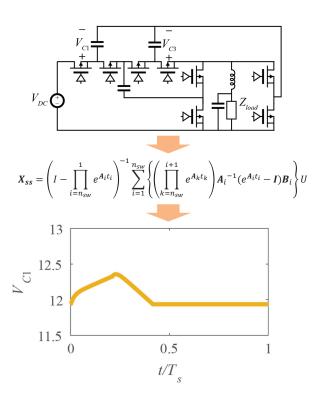


TENNESSEE KNOXVILE



Numerical Approach: HDSC Example

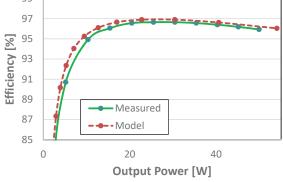
- 4:1 Hybrid Dickson Switched-Capacitor Converter
- 48-to-5 V, 0-100 A output
- Including C_{oss}, 13 states, 3 subintervals



THE UNIVERSITY OF TENNESSEE

Model Validation

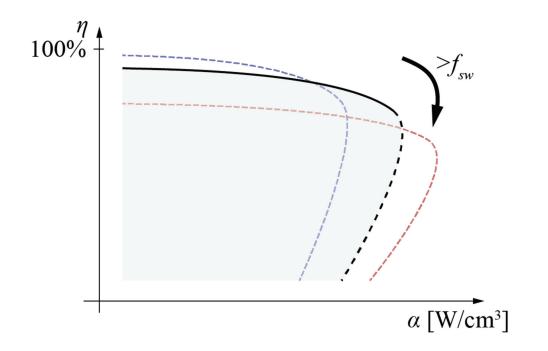
- Constructed 8:1 HDSC converter
 - Measured 96.7% peak efficiency at 30W
 - Model predicts 96.9% at 30.4W
- Model includes capacitor ESR



COURSE CONCLUSIONS

TENNESSEE KNOXVILLE

HF Power Electronics – When and Why



Thank you for all your hard work, and good luck with finals!

