Steady-State Large-Signal Analysis

$$\boldsymbol{x}(T_{S}) = \left(\prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right) \boldsymbol{x}(0) + \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

In steady-state, $\mathbf{x}(T_s) = \mathbf{x}(0)$

$$\boldsymbol{x}(T_{S}) = \left(I - \prod_{i=n_{SW}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{SW}} \left\{ \left(\prod_{k=n_{SW}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

Gives explicit solution for steady-state operation of any switching circuit

TENNESSEE KNOXVILLE

Small Signal Modeling

Small Signal Modeling

Small Signal Modeling

Complete Small Signal Model

This completes the small-signal model

$$\widehat{\boldsymbol{x}}[n+1] = \boldsymbol{\Phi}\widehat{\boldsymbol{x}}[n] + \boldsymbol{\Psi}\widehat{\boldsymbol{u}}[n] + \boldsymbol{\Gamma}\widehat{\boldsymbol{d}}[n]$$

where

$$\boldsymbol{\Gamma} = e^{A_2 D' T_s} \big((A_1 - A_2) X_D + (B_1 - B_2) U \big) T_s$$

with $X_D = x(DT_s)$ in steady-state

L. Corradini et. al. Digital Control of High Frequency Switched-Mode Power Converters, Section 3.2

Inclusion of Delay

Current Control

Discrete Time Analysis: Results

$$\boldsymbol{X}_{ss} = \left(I - \prod_{i=n_{sw}}^{1} e^{A_{i}t_{i}}\right)^{-1} \sum_{i=1}^{n_{sw}} \left\{ \left(\prod_{k=n_{sw}}^{i+1} e^{A_{k}t_{k}}\right) A_{i}^{-1} (e^{A_{i}t_{i}} - \boldsymbol{I}) \boldsymbol{B}_{i} \right\} U$$

- Valid for any switched circuit, as long as
 - 1. Inputs, *U*, are constant or slowly varying
 - 2. All times t_i are known
 - 3. Every subinterval can be described by a linear circuit
- Requires no dedicated analysis other than finding $m{A}_i$ and $m{B}_i$
- Decisively **not** a design-oriented equation

