
CHAPTER 3

STATE PLANE ANALYSIS, AVERAGING,

AND OTHER ANALYTICAL TOOLS

he sinusoidal approximations used in the previous chapter break down when the effects of

harmonics are significant.  This is a particular problem in the case of discontinuous

conduction modes, where harmonics cannot be ignored.  To obtain a complete understanding of

the behavior of resonant converters, another approach is needed.  In this chapter, the fundamental

principles necessary for an exact time domain analysis of resonant converters are explained.  These

principles are used in later chapters to examine not only the series and parallel resonant converters,

but also quasi-resonant converters.

The state plane can be used to reduce the complicated tank waveforms of resonant

converters to geometry.  When properly normalized, the tank waveforms are described by

segments of circles, lines, and/or other simple figures in the state plane.  Determination of

converter steady-state characteristics is often a matter of piecing together these segments, then

solving a few triangles or other figures.

Equally important is the use of averaging, in which the dc and low-frequency ac

components of the converter terminal waveforms are found while neglecting high frequency

switching harmonics.  The average output current of the series resonant converter is related to the

charge that flows through its output terminals per switching period.  This charge also flows

through the tank capacitor, where it excites an ac voltage.  The load current and tank capacitor

voltage magnitude are therefore closely related, and considerable insight can be gained by use of

some simple arguments regarding the flow of charge during a switching period.  Similarly, the

average output voltage of the parallel resonant converter is the volt-seconds (flux linkages) applied

to the tank inductor per switching period, and therefore it is also related to the peak tank current.

Thus, some simple charge and flux-linkage arguments are discussed in this chapter, and are used

in later chapters to easily relate the tank waveforms to the dc terminal voltages and currents.

The various fundamental principles which describe the flow of charge and flux linkages in

a resonant circuit, and their relations to the average terminal waveforms, are collected in section

3.1, and are illustrated using the series and parallel resonant converters as examples.  Systems of
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notation and normalization, a perennial source of confusion in any discussion of resonant

converters, are described in section 3.2.  In sections 3.3 and 3.4, the ringing responses of series

and of parallel resonant tank circuits are derived, and they are plotted in the state plane.

It is apparent that an exact time domain analysis of resonant converters is more complex

than the use of the sinusoidal approximations and frequency domain methods of chapter 2.

Nonetheless, simple and exact closed-form solutions can be obtained for the many continuous and

discontinuous conduction modes of the series resonant converter, as well as for the parallel

resonant and many quasi-resonant converters.  These ideas are also useful in modeling the

dynamics of these converters, and the basic ideas developed in this chapter are used throughout the

remainder of this monograph.

3 . 1 . Averaging and Related Concepts

The signals in a power electronics system generally contain substantial switching

harmonics.  By specification and design, the magnitude of these harmonics must be negligible at

the converter output.  Hence, when analyzing the behavior of a converter, we usually neglect the

switching harmonic components of the converter terminal waveforms, and model only their

dominant dc and low-frequency ac components.  This simplifies the analysis considerably, and

allows a much better understanding of the converter properties.

The basic arguments used to average the converter waveforms were described by Wester

and Middlebrook [1].  Although these arguments were originally developed for modeling PWM

converters, they also assist the analysis of resonant converters.  Averaging the system signals over

a period does not significantly alter the waveforms, so long as the period is short compared to the

system’s natural response times.  This is similar to passing the waveforms through a low-pass

filter;  if the filter corner frequency is sufficiently high, then the important dc and low-frequency ac

components are not affected.  In particular, it is useful to average the terminal waveforms over one

switching period.  This effectively removes the switching and ringing harmonics without

modifying the desired dc and low frequency ac response, and significantly simplifies the analysis.

This approximation is justified because it is normally required that switching harmonics be

negligibly small at the load, and therefore sufficient low-pass filtering is incorporated into any

well-designed converter.

The implication is that the converter output current can be adequately represented if we

simply find the total charge which flows out of the output port during one switching period.

Dividing this charge by the switching period yields the average output current.  Dual arguments

allow representation of the output voltage knowing the total flux-linkages, or volt-seconds, which

the converter applies to the output during one switching period.  In this section, some basic



Chapter 3.   State Plane Analysis

principles are discussed which allow the average terminal voltages and currents to be directly

related to the tank ringing waveforms.

Averaging: charge arguments

Let us consider how to average a dependent terminal current iN of a switch network, as

illustrated in Fig. 3.1.  If iN is periodic with period T, then the average value can be written

< iN >  =  1
T

 iN(t) dt
0

T

  =  
qN

T
(3-1)

where   qN  =  iN(t) dt
0

T

   is the net charge transferred at the port over period T.

The form <iN>  =  qN / T  is useful because, as shown later, qN can be related to other salient

features of the resonant network waveforms.  In particular, qN is a function of the change in tank

capacitor charge (and hence also the change in tank capacitor voltage) over a portion of the

switching period.
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Fig. 3.1.Arbitrary output of switch network;  average output current computed
from charge transfer.
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Averaging: flux-linkage arguments

Dependent terminal voltages can be averaged using dual arguments.  Consider a dependent

terminal voltage vN of a switch network, as illustrated in Fig. 3.2.  If vN is periodic with period T,

then the average value can be written

< vN >  =  1
T

 vN(t) dt
0

T

  =  λN
T

(3-2)

where   λN  =  vN(t) dt
0

T

   is the net volt-seconds applied at the port over period T.

The form < vN >  =  λN / T  is useful because, as shown later, λN can be related to other salient

features of the resonant network waveforms.  In particular, λN is a function of the change in tank

inductor flux linkages (and hence also the change in tank inductor current) over a portion of the

switching period.
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Fig. 3.2.Computation of average terminal voltage <vN> using flux linkages λN.



Chapter 3.   State Plane Analysis

Tank capacitor charge variation

Over one switching cycle, charge is transferred from the switch power input, through the

tank capacitor, to the output.  The amount of charge transfer can be directly related to the capacitor
voltage waveform.  In particular, over a given interval (tα,tβ), if a given amount of charge q is

deposited on the tank capacitor, then we know that the capacitor voltage changes from vC(tα) to

vC(tβ), where

q  =  C (vC(tb) – vC(ta)) (3-3)

Hence, the capacitor voltage initial and final values vC(tα) and vC(tβ) are related to the charge

transfer, and therefore also to the switch average terminal current (by Eq. 3-1).

For example, consider the circuit of Fig.

3.3.  It is desired to compute the average, or dc

component, of the bridge rectifier output current

<i2>, and to relate it to the capacitor voltage

waveform vC(t).  Typical waveforms are sketched

in Fig. 3.4.  The average value of i2(t) is given by:

<i2>  =  1
1
2T

 i2(t) dt
0

1
2
T

       
  =  

2q
T (3-4)

where q  =  i2(t) dt
0

1
2
T

During the interval 0 ≤ t ≤ T/2, the capacitor current iC(t) is identical to the bridge rectifier

output current i2(t), and hence the same net charge +q is deposited on the capacitor.  The maxima

and minima of the capacitor voltage waveform vC(t) coincide with the zero crossings of the current

iC(t), and hence the capacitor voltage changes from its minimum value –VCP to its maximum value

+VCP during this interval.  The capacitor charge relation is therefore

q  =  C (VCP – (–VCP))  =
  
2CVCP (3-5)

Elimination of q from Eqs. (3-4) and (3-5) yields

<i2>  =  4CVCP
T (3-6)

i 2

R

C

iC
+ v    -C

Fig. 3.3. Demonstration of direct relation
between dc component of load current
and peak-to-peak capacitor voltage.
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Hence, the average value, or dc

component, of the resistor current <i2> and

the peak capacitor voltage VCP are directly

related.  These arguments are used in

chapter 4 to derive a nearly identical relation

between the peak tank capacitor voltage and

the load current of the series resonant

converter.

Tank inductor flux linkage variation

The dual of the tank capacitor

charge relation follows from the definition

λ = L i.  Inductor flux-linkage λ has the

dimensions of volt-seconds, and is the

integral of the applied voltage as defined in

Eq. (3-2).  During one switching cycle,

volt-seconds are transferred from the

switch power input, through the tank

inductor, to the output.  So over a given
interval (tα,tβ), if a given amount of flux

linkages λ are stored in the tank inductor,

then the inductor current changes from
iL(tα) to iL(tβ), where

λ  =  L (iL(tb) – iL(ta))

Hence, the inductor current boundary
values iL(tα) and iL(tβ) are related to the volt-second transfer, and hence also to the converter

average terminal voltage (by Eq. 3-2).
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Fig. 3.4. Waveforms for the circuit of Fig. 3.3.
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For example, consider the circuit of

Fig. 3.5.  We wish to compute the average, or

dc component, of the bridge rectifier output

voltage <v2>, and to relate it to the inductor

current waveform iL(t).  Typical waveforms are

sketched in Fig. 3.6.  The average value of

v2(t) is given by

<v2>  =  1
1
2T

 v2(t) dt
0

1
2
T

       
  =  2λ

T (3-8)

where λ  =  v2(t) dt
0

1
2
T

During the interval 0 ≤ t ≤ T/2, the inductor voltage vL(t) is identical to the bridge rectifier

output voltage v2(t), and hence the same net flux linkages +λ are stored in the inductor.  The

maxima and minima of the inductor current waveform iL(t) coincide with the zero crossings of the

voltage vL(t), and hence the inductor current changes from its minimum value –ILP to its maximum

value +ILP during this interval.  The inductor flux linkage relation is therefore

λ  =  L (ILP – (–ILP))  =  2LILP (3-9)

Elimination of λ from Eqs. (3-8) and (3-9) yields

<v2>  =  4LILP
T (3-10)

R
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↑

Fig. 3.5. Sinusoidal current source driving
an inductor in parallel with bridge
rectifier and resistor.



Principles of Resonant Power Conversion

Hence, the average value, or dc

component, of the resistor voltage <v2>

and the peak inductor current ILP are

directly related.  Similar arguments are used

in chapter 5 to derive a relation between the

peak tank inductor current and the load

voltage of the parallel resonant converter.

Kirchoff’s laws in integral form

 We know from Kirchoff’s Current

Law (KCL) that the total currents flowing

into a given node must be zero:
ik∑

k

  =  0
(3-11)

The net charge which enters the node over a
given interval (tα, tβ) must also be zero:

qk∑
k

  =  0
(3-12)

where qk  =  ik(t) dt
ta

tb

The integral form of Kirchoff’s

Current Law is useful for relating terminal

charge quantities to the change in tank capacitor charge.  For example, consider the circuit of Fig.

3.7.  This circuit is similar to the tank circuits of both the parallel resonant converter and the zero-

current resonant switch, during one ringing subinterval.  In conjunction with the determination of

the average input current of this network, we wish to compute the charge contained in i1 during the

given ringing subinterval:

q1β  =  i1(t) dt
tα

tα+tβ

(3-13)

By KCL, we know that i1 = iC + i2.  Hence,
q1β  =  qCβ + q2β (3-14)

where qCβ  =  iC(t) dt
tα

tα+tβ
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Fig. 3.6. Waveforms for the circuit of Fig. 3.5.
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Fig. 3.7. Illustration of use of integral form of KCL for a typical tank network.

and q2β  =  i2(t) dt
tα

tα+tβ

Therefore, the ringing interval input charge q1β is related to qCβ, the change in tank

capacitor charge over the ringing interval, and to q2β, the charge transferred to the output during

the ringing interval.  Some of the input charge is stored on the tank capacitor, while the remainder

flows to the output.
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An integral form of Kirchoff’s Voltage Law

(KVL) is also useful.  The total voltage around a

network loop is zero:
vk∑

k

  =  0
(3-15)

The total volt-seconds applied over a given interval
(tα,tβ) across the elements of this loop must also be

zero:
λk∑

k

  =  0 (3-16)

where λk  =  vk(t) dt
ta

tb

When element k is an inductor or transformer, λk

has the physical interpretation of winding flux

linkages.

The integral form of KVL relates terminal

volt-second quantities to the change in tank

inductor flux linkages.  For example, in

conjunction with the determination of the average

output voltages of the parallel resonant converter

and the zero current resonant switch, we wish to

compute the volt-seconds contained in v2 during

the ringing interval (see Fig. 3.8):

λ2β  =  v2(t) dt
tα

tα+tβ

(3-17)

By KVL, we know that v2 = v1 – vL.  Therefore,

λ2β  =  λ1β – λLβ (3-18)

where λ1β  =  v1(t) dt
tα

tα+tβ

λLβ  =  vL(t) dt
tα

tα+tβ

Therefore, the ringing interval output volt-seconds λ2β is related to λLβ, the change in tank

inductor flux linkages over the ringing interval, and to λ1β, the volt-seconds applied to the input

during the ringing interval.  Some of the input volt-seconds are stored in the tank inductor, while

the remainder are applied to the switch output.
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Fig. 3.8. llustration of the use of the
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Steady-state capacitor charge balance

When a capacitor operates with periodic steady-state waveforms, then the initial and final

values of the capacitor voltage waveform are identical.  In consequence, no net charge is deposited

in the capacitor, and the integral of the capacitor current waveform over one complete cycle is zero.

The dc component of capacitor current is zero.  Formally, this follows from the definition

iC(t)  =  C 
dvC(t)

dt
(3-19)

Integration over one complete period T yields

vC(T) – vC(0)  =  1
C

 iC(t) dt
0

T

(3-20)

In periodic steady state, vC(T) = vC(0).  Hence,

0  =  iC(t) dt
0

T

(3-21)

Division by the period T then shows that the average value, <iC>, or dc component, must also be

zero:

1
T

 iC(t) dt
0

T

  =  <iC>  =  0 (3-22)

This is the well-known principle of steady-state capacitor amp-second, or charge, balance.  It is

true for any capacitor which operates with periodic steady-state waveforms.

For example, consider the capacitive output filter

circuit of Fig. 3.9.  In steady state, no net charge is

deposited on capacitor CF during a switching period, and

hence the average rectifier output current i2 is equal to the

dc component I of the load current i(t).  By Ohm’s law, the

dc component V of the load voltage v(t) is V = IR.  Hence,

we have

V  =  <i2> R (3-23)

For this example, the input current, i2(t), is a rectified sinusoid

i2(t)  =  I2P | sin(ωSt) | (3-24)

whose average is

<i2>  =  1
TS

 i2(t) dt
0

TS

  =  2
π

 I2P

(3-25)

Substitution of this expression into Eq. (3-23) yields
V  =  2

π
 I2P R (3-26)

C↑
F

iCF

i  (t)2

i (t)

+

-

v (t) R

Fig. 3.9 Capacitive filter circuit.
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Output voltage ripple can also be

estimated using charge arguments.  In Fig.

3.10, the capacitor current waveform is

sketched for the case in which CF is large

enough that its voltage ripple (induced by the

switching harmonics in i2(t)) is small compared

to the dc component V.  In this case, the

voltage harmonics applied to resistor R are also

small, and hence by Ohm’s law the current

through R is essentially dc.  Therefore, the dc

component of i2(t) flows exclusively through

R, while the switching harmonic of i2(t) flows

overwhelmingly through CF.  The capacitor

current waveform is then given by

iCF(t)  =  i2(t) - i(t)  ≅   I2P | sin(ωSt) | – 2
π

 I2P

(3-27)

The capacitor current is positive over the

interval  39.54˚ < ωSt < 140.46˚.  During this

interval, the capacitor voltage increases by an

amount 2∆vC, from its minimum value to its

maximum value.  This corresponds to an

increase in charge qC given by the integral of

Eq. (3-27) over this interval:

qC  =  I2P( | sin(ωSt) | – 2
π

 ) 
d(ωSt)

ωS
39.54˚

140.46˚

(3-28)

Evaluation of the integral yields

qC  =  0.067 I2P TS (3-29)

The peak-to-average capacitor voltage ripple is therefore

∆vC  =  0.067 I2P TS
2C

(3-30)

Or, in terms of the load current,

∆vC  =  0.0526 I TS
C

(3-31)

This gives a simple estimate which is useful for choosing the output filter capacitance.  However, it

does not include the effects of capacitor esr (equivalent series resistance), which can cause the

voltage ripple to be significantly larger than that predicted by Eq. (3-31).
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ω   tS

ω   tS

Fig. 3.10. Typical waveforms for the
circuit of Fig. 3.9.
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Steady-state inductor flux-linkage balance

When an inductor operates with periodic steady-state waveforms, then the initial and final

values of the inductor current waveform are identical.  In consequence, no net flux linkage is

induced in the inductor, and the integral of the inductor voltage waveform over one complete cycle

is zero.  The dc component of inductor voltage is zero.  Formally, this follows from the definition

vL(t)  =  L 
diL(t)

dt
(3-32)

Integration over one complete period T yields

iL(T) – iL(0)  =  1
L

 vL(t) dt
0

T

(3-33)

In periodic steady state, iL(T) = iL(0).  Hence,

0  =  iC(t) dt
0

T

(3-34)

Division by the period T then shows that the average value, <vL>, or dc component, must also be

zero:

1
T

 vL(t) dt
0

T

  =  <vL>  =  0 (3-35)

This is the well-known principle of steady-state inductor volt-second, or flux-linkage, balance.  It

is true for any inductor which operates with periodic steady-state waveforms.

3 . 2 . Normalization and Notation

The geometries of the state plane plots of the next sections are simplified considerably

when the waveforms are normalized using a base impedance Rbase equal to the tank characteristic

impedance R0.  The normalizing base voltage Vbase can be chosen arbitrarily, and is usually chosen

to be equal to the power input voltage Vg.  Other normalizing base quantities can then be derived:

base impedance Rbase =  R0  =   L / C

base voltage Vbase =  Vg

base current Ibase =  Vbase / Rbase  =  Vg / R0

base power Pbase =  Vbase Ibase  =  Vg2 / R0 (3-36)

In the system of notation developed at the University of Colorado (CU), the symbol for a

normalized voltage contains the same subscripts and case as the original un-normalized voltage, but

the character “V” is replaced by “M”.  For example,

M  =  V / Vbase normalized load voltage

mC(t)  =  vC(t) / Vbase normalized tank capacitor voltage (3-37)
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For currents, “I” is replaced by “J”:

J  =  I / Ibase normalized load current

jL(t)  =  iL(t) / Ibase normalized tank inductor current (3-38)

When a converter contains a transformer, the base quantities should be referred to the proper side

of the transformer by multiplication by the appropriate function of the transformer turns ratio.

Some other authors use the same normalizing base quantities, but denote normalized

variables using the subscript “n”.  The symbol “q” is also sometimes used to denote the normalized

output voltage.  Neither of these conventions is used here.

It is convenient to normalize frequency using the tank resonant frequency f0, and to convert

time to angular form:

 fbase  =  f0  =  1 / 2π  LC base frequency

ω0  =  1 /  LC tank resonant angular frequency

F  =  fS / f0 normalized switching frequency

α  =  ω0 tX angular length of interval tX (3-39)

where fS is the switching frequency, and TS = 1/fS is the switching period.  The following notation

is also traditional in the series resonant converter literature:

γ  =  ω0 TS / 2  =  π / F angular length of one half switching period

α  =  ω0 tα diode conduction angle

β  =  ω0 tβ transistor conduction angle (3-40)

When performing exact time-domain or state-plane analysis, Q is defined using the actual load

resistance R (as opposed to the effective resistance Re of chapter 2):

Q  =  R0 / R for the series resonant converter

Q  =  R / R0 for the parallel resonant converter (3-41)

fs
f0

1
2

 f0
1
3

 f0

k = 0k = 1k = 2etc.
ξ = 1ξ = 3

Fig. 3.11.Switching frequency ranges over which various mode indices k and
subharmonic numbers ξ occur.

Final definitions for the series resonant converter are the mode index k and subharmonic number ξ ,

as follows.  The continuous conduction mode k occurs over the frequency range
f0

k+1
  <  fs  <  f0

k or
1

k+1
  <  F  <  1

k (3-42)

for integer k.  The subharmonic number is then
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ξ  =  k + 
1 + (-1)k

2 (3-43)

For example, continuous conduction mode operation at switching frequency fS = 0.4 f0 would

imply that k = 2 and ξ = 3.

3 . 3 . State Plane Trajectory of a Series Tank Circuit

Let us next examine the time-domain response of a series

resonant circuit.  A series tank circuit, excited by a constant

voltage VT, is shown in Fig. 3.12.  As shown in the next chapter,

the series resonant converter can be reduced to a circuit of this

form during each subinterval.  The state equations of this circuit

are:

L 
diL(t)

dt
   =  VT – vC(t)

C 
dvC(t)

dt
  =  iL(t)

(3-44)

Let us normalize the state equations according to the conventions of section 3.2.  Note that

L  =  R0
ω0

and C  =  1
ω0 R0

(3-45)

where ω0 is the tank angular resonant frequency and R0 is the tank characteristic impedance, as

defined in Eqs. (3-36) and (3-39).  Division of Eqs. (3-45) by Vg and use of the identities (3-46)

and (3-36) - (3-39) yields
1

ω0
 
djL(t)

dt
   =  MT – mC(t

1
ω0

 
dmC(t)

dt
  =  jL(t)

(3-46)

where MT  =  VT / Vg.  The solution of this second-order system of linear differential equations is
mC(t)  =  A cos(ω0t - ϕ) + MT
jL(t)    =  –A sin(ω0t - ϕ) (3-47)

where the constants A and ϕ depend on boundary conditions.  It can be seen that the solution

contains a dc term mC = MT (or, vC = VT) which represents the dc solution of the circuit, plus a

sinusoidal term which represents the ac ringing response of the resonant tank.

+-

i L

+

-
vC

VT

Fig. 3.12.Series tank circuit,
excited by constant
voltage VT.
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The normalized state plane

The normalized state plane is a plot of mC(t) vs. jL(t), with t as an implicit parameter.  As

shown in Fig. 3.14, the solution (3-47) above describes a circle in the normalized state plane, of

radius A.  If we let the radius go to zero, we can see that the circle is centered at mC = MT, jL = 0,

which coincides with the dc solution of the circuit.  As time increases, the solution moves in the

clockwise direction around the center; this must be true because the capacitor is in series with the

inductor, and if the normalized inductor current is positive, then the capacitor charges and mC

increases.  In general, the normalized state plane trajectory of an undamped two-element resonant

circuit is circular and is centered at the dc solution of the circuit.  The radius depends on the initial

values of jL and mC, and remains constant.

It can also be seen from Eq. (3-47) and Fig. 3.14 that time is related to the angle through

which the trajectory moves.  During an interval of time t1, the trajectory moves through an arc of

angle ω0t1.  So the length of ringing intervals and their angles in the normalized state plane can be

easily related.  Note, this is not necessarily true for systems other than the resonant tank circuit

considered here.

The tank circuit of the parallel resonant converter

The name of the parallel resonant converter can present some confusion, because although

its load is connected in parallel with the tank capacitor, the tank capacitor and inductor are

effectively in series.  In consequence, the time domain response and normalized state plane

trajectory are quite similar to that of the series resonant converter tank circuit.

θ
A

x

y

Y0

X0

x  =  X0 + A cos(θ)

y  =  Y0 – A sin(θ)

Fig. 3.13.Parametric representation of a circle.

j L

mCMT

A
ϕ

Fig. 3.14.Normalized state plane trajectory
for the circuit of Fig. 3.12, corresponding
to Eq. (3-47).



Chapter 3.   State Plane Analysis

As shown in chapter 5, during each

subinterval of the operation of the parallel resonant

converter, its tank circuit can be reduced to a

configuration of the form shown in Fig. 3.15.

This differs from the circuit of Fig. 3.12 only by

the addition of constant current source IT.  The

effect of this extra source is to shift the dc solution

of the circuit, and hence also the center of the

circular trajectory.

The state equations of the circuit are

L 
diL(t)

dt
   =  VT – vC(t)

C 
dvC(t)

dt
  =  iL(t) – IT (3-48)

In normalized form, the state equations become
1

ω0
 
djL(t)

dt
   =  MT – mC(t

1
ω0

 
dmC(t)

dt
  =  jL(t) – JT

(3-49)

where  JT  =  IT R0 / Vg.  The solution is
mC(t)  =  MT + (mC(0) – MT) cos(ω0t - ϕ) + (jL(0) – JT) sin(ω0t - ϕ)
jL(t)    =   JT + (jL(0) – JT) cos(ω0t - ϕ) – (mC(0) – MT) sin(ω0t - ϕ) (3-50)

As shown in Fig. 3.16, this represents a circular

arc centered at the dc solution mC = MT, jL  = JT,

whose radius r depends on the initial conditions

and is given by
r  =   (mC(0) – MT)2 + (jL(0) – JT)2

(3-51)

As in the case of the circuit of Fig. 3.12, the length

of ringing intervals and their angles in the

normalized state plane can be easily related.

During an interval of time t1, the trajectory moves

through an arc of angle ω0t1.

All of the fundamental concepts necessary for an exact analysis of the series, parallel, and

other resonant converters have now been discussed.  Various arguments involving the flow of

charge and flux-linkages can be used to relate the tank waveforms to the average terminal voltages

and currents of the converter.  The waveforms can be normalized, which causes the state plane

trajectories to assume circular paths.  As seen in the next two chapters, these concepts allow

+
-

VT

i L

L

C

+

-

vC ↑ I T

Fig. 3.15. Tank circuit, driven by
constant voltage source, VT, and
constant current source, IT.

.

r

j L

j  (0)L

JT

mCMTm  (0)C

Fig. 3.16 Normalized state plane
trajectory for the circuit of Fig. 3.15.
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closed-form analytical solution of the characteristics of the series and parallel resonant converters in

a direct manner.  They also aid in the understanding of resonant switch converters.
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