CHAPTER 3

STATE PLANE ANALYSIS, AVERAGING,

AND OTHER ANALYTICAL TOOLS

he sinusoidal approximations used in the previous chapter break down when the effects of
harmonics aresignificant. This is gparticular problem in the case discontinuous
conductionmodes, wheréarmonics cannot bignored. Toobtain a completeinderstanding of
the behavior of resonant converters, another approach is needed. In this thajfiadamental
principles necessary for an exact time domain analysis of resonant converters are explained. These
principles are used in later chapters to examine not only the serigaralidlresonant converters,
but also quasi-resonant converters.

The state plane can hesed toreduce the complicated tankaveforms of resonant
converters to geometry.When properly normalizedthe tank waveforms are described by
segments of circles, linegnd/or other simple figures ithe stateplane. Determination of
converter steady-state characteristics is oftenatter of piecing togethethese segmentsthen
solving a few triangles or other figures.

Equally important is theuse of averaging, in whiclthe dc andlow-frequency ac
components of the convertéerminal waveformsare found while neglecting high frequency
switching harmonics. The average output currertheteries resonant converterredated to the
charge thaflows throughits output terminals per switchingeriod. Thischarge alsdflows
throughthe tank capacitorvhere itexcites an awoltage. The load current and tardapacitor
voltage magnitude are therefore closediated, and considerable insigian be gained byse of
some simple arguments regardihg flow of charge during a switchingeriod. Similarly, the
average output voltage of the parallel resonant converter wlfiseconds (flux linkagespplied
to the tank inductor per switchirngeriod,and therefore it is alseelated to the peak tardurrent.
Thus, some simpleharge and flux-linkage arguments discussed in this chapter, aackused
in later chapters to easily relate the tank waveforms to the dc terminal voltages and currents.

The various fundamental principles which describeflthe of charge and flux linkages in
a resonant circuit, and their relationsthe average terminalaveforms,are collected in section
3.1, and are illustrated usitige series angarallelresonant converters as examples. Systems of
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notation and normalization, a perennsdurce of confusion in any discussion of resonant
converters, are described in sect®f. Insections3.3 and3.4, the ringingresponses of series
and of parallel resonant tank circuits are derived, and they are plotted in the state plane.

It is apparent that an exaohe domain analysis of resonant converters is num@plex
than theuse ofthe sinusoidal approximations and frequency domain methods of chapter 2.
Nonetheless, simple and exact closed-form solutions can be obfairtté manycontinuous and
discontinuous conduction modes thfe series resonant converter, agll as for the parallel
resonant and many quasi-resonantverters. These ideas aralso useful in modeling the
dynamics of these converters, and the basic ideas developed in this chapter are used throughout the
remainder of this monograph.

3.1. Averaging and Related Concepts

The signals in a powerelectronics system generallgontain substantial switching
harmonics. Byspecification andlesign,the magnitude of these harmoniosist be negligible at
the converteputput. Hence, wheanalyzing the behavior of @nverter, we usuallpeglect the
switching harmonic components tfie converter terminalvaveforms, and model onlytheir
dominant dc and low-frequency aomponents. Thisimplifies theanalysis considerably, and
allows a much better understanding of the converter properties.

The basic argumentssed toaverage the converteraveforms were described MWester
and Middlebrool1]. Although these arguments were originally develofsedmodeling PWM
converters, they also assist the analysis of resonant converters. Avéhagipstem signals over
a period does not significantly alter the waveforms, so lortheaperiod isshortcompared to the
system’snaturalresponse times. This 8milar to passingthe waveforms through a low-pass
filter; if the filter corner frequency is sufficiently high, then the important dc and low-frequency ac
components are not affected. In particular, it is useful to averagerthmalwaveforms over one
switching period. Thiseffectively removes theswitching and ringing harmonics without
modifying the desired dc and low frequencyrasponseand significantly simplifies thanalysis.
This approximation is justified because it is normally requitieat switching harmonics be
negligibly small at thdoad, and therefore sufficiertow-passfiltering is incorporated into any
well-designed converter.

The implication is that the converteutput current can be adequately represented if we
simply find the total chargevhich flows out of the outputport during one switchingperiod.
Dividing this charge byhe switching period yieldshe average outpuwurrent. Dual arguments
allow representation of the output voltagswing the totalflux-linkages, or volt-seconds, which
the converter applies to the outmiuring one switchingperiod. In this section, someasic
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principles arediscussed whiclallow the average terminaloltages and currents to lwhrectly
related to the tank ringing waveforms.

Averaging: charge arguments

Let usconsider how t@verage a dependent terminal currgnbi a switch network, as
illustrated in Fig. 3.1. If\ is periodic with period T, then the average value can be written

k
<in > =%L in(t) dt

N (3-1)

T

-
where @ = f iN(t) dt is the net charge transferred at the port over period T.
0
Theform <in> = qu/ T is useful because, as shown latgy,cgn be related to other salient
features of the resonant network waveforms. In particujars @ function of the change in tank
capacitor chargéand hence alsthe change in tank capacitor voltage)er a portion of the
switching period.
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Vi Port 1 Port N | Vy |Load

' I

: <iy>= Oy
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Fig. 3.1.Arbitrary output of switch network; average output current computed
from charge transfer.
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Averaging: flux-linkage arguments

Dependent terminal voltages can be averaged usingadyainents. Considerdependent
terminal voltage y of a switch network, as illustrated in Fig. 3.2. {f i periodic with period T,

then the average value can be written

;
<y > =%f wn(t) dt
0

A (3-2)
.

T
where Ay = f W(t) dt is the net volt-seconds applied at the port over period T.
0

Theform <y > = Ay / T is useful because, as shown ladgr,can be related to other salient
features of the resonant network waveforms. In partichjars a function of the change in tank
inductor flux linkages (and hence alb® change in tank inductor curreayer a portion of the
switching period.
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Fig. 3.2.Computation of average terminal voltageygwusing flux linkageg.
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Tank capacitor charge variation

Over one switching cycle, charge is transferred fri@switch power input, through the

tank capacitor, to the output. The amount of charge transfer can be dieéattyg to the capacitor
voltagewaveform. In particular, over given interval (§,tg), if a given amount of charge q is

deposited on the tank capacitor, thenkmew that the capacitor voltagehanges from ¢ty) to
vc(tg), where

q = C(vc(ty) — ve(ta) (3-3)
Hence,the capacitor voltage initidnd final values &(ty) and \&(tg) are related to the charge

transfer, and therefore also to the switch average terminal current (by Eq. 3-1).

For example, considethe circuit of Fig.
3.3. It isdesired to compute thaverage, or dc
component, ofthe bridge rectifier output current
<i,>, and torelate it to the capacitor voltage
waveform \¢(t). Typical waveformsare sketched
§ . in Fig. 3.4. The average value gft) is given by:

Ic

T
r <i> = #f io(t) dt
0
Fig. 3.3. Demonstration of direct relation 2q
between dc component of load current =T 3-4
and peak-to-peak capacitor voltage. (3-4)

iy
where q = f b(t) dt
0

During the interval & t < T/2, the capacitor curreng(t) is identical to thédridge rectifier
output currentAt), and hence the samet charge +q is deposited on the capacitor. M&ama
and minima of the capacitor voltage waveforgt)coincide with the zerarossings othe current
ic(t), and hence the capacitor voltage changes fromiitsnum value —p to its maximum value
+Vpduring this interval. The capacitor charge relation is therefore

q = C(Mcp—(-Vcp) = 2CVcp (3-5)

Elimination of g from Egs. (3-4) and (3-5) yields

T (3-6)
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area =+

area = -

area =+q area=-q

+Vep

/AvE

_VCP

Fig. 3.4. Waveforms for the circuit of Fig. 3.3.

Hence, the average value, or dc
component, of the resistor currenp><iand

the peak capacitor voltagecy are directly
related. These argumeni@re used in
chapter 4 to derive a nearly identical relation
between the peak tank capacitor voltage and
the load current of theseries resonant
converter.

Tank inductor flux linkage variation

The dual of the tank capacitor
charge relatiorfollows from the definition
A = L i. Inductor flux-linkageA has the
dimensions of volt-seconds, and is the
integral of the applied voltage as defined in
Eq. (3-2). During one switching cycle,
volt-seconds are transferred from the
switch power input, throughthe tank

inductor, tothe output. So over aiven
interval (&,tg), if a given amount of flux

linkagesA are stored inthe tankinductor,

then the inductor current changes from
iL(t) to i (tg), where

A= L(iL(ty) —i(ta)

Hence, the inductor currentboundary

values i(ty) and j(tg) are related to theolt-second transferand hence also tthe converter

average terminal voltage (by Eq. 3-2).
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+ I For example, considethe circuit of

~ CD y Fig. 3.5. We wish t@ompute theaverage, or
L + dc component, othe bridge rectifier output

- v, R Voltage <y>, and torelate it to theinductor
P - current waveform.t). Typical waveforms are

sketched inFig. 3.6. The average value of

Fig. 3.5. Sinusoidal current source drivingvz(t) is given by

an inductor in parallel with bridge
rectifier and resistor.

i7
V> = % j Vo(t) dt
Al 0

=2\
T (3-8)

i
where A= f Ww(t) dt
0
During the interval & t < T/2, the inductor voltage \{t) is identical to thdoridge rectifier

output voltage ¥t), and hence the same rfeix linkages A are stored inthe inductor. The
maxima and minima of the inductor current wavefoy(t) icoincidewith the zerocrossings of the
voltage y (t), and hence the inductor current changes from its minimum valpgo-its maximum

value +| p during this interval. The inductor flux linkage relation is therefore

A =L(p—(-kp) = 2LIp (3-9)
Elimination ofA from Egs. (3-8) and (3-9) yields

_4Llp
<\Vo> = —:=5
2 T

(3-10)
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A Hence, the average value, or dc

Vi component, ofthe resistor voltage <y>

area = A and the peak inductor currentpl are

directly related. Similar arguments arged

in chapter 5 to derive a relation between the

2 peak tank inductor current and the load
voltage of the parallel resonant converter.

Aarea=Hh Kirchoff's laws in integral form

2 We know from Kirchoff'sCurrent
Law (KCL) that the totalcurrents flowing
T T into a given node must be zero:

2 %ikzo

4 - The net charge which enters the node over a
given interval (¢, tg) must also be zero:

>a& =0
K

tb
N \/ <[ o
ta

The integral form of Kirchoff's
Fig. 3.6. Waveforms for the circuit of Fig. 3.5. Current Law is useful forelating terminal
charge quantities to the change in tank capacitarge. For example, considbe circuit ofFig.
3.7. This circuit is similar to the tank circuits of bdile parallelresonant converter aride zero-
current resonant switch, during one ringing subintervalcolmunction withthe determination of
the average input current of this network, we wish to compute the charge containddring the

(3-11)

(3-12)

e

given ringing subinterval:

tattp
ta
By KCL, we know thati = ic + io. Hence,
Qi = Gp * %p (3-14)

tattp
where Ocp = f ic(t) dt
to
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Fig. 3.7. lllustration of use of integral form of KCL for a typical tank network.

tatip
and O = f b(t) dt
to

Therefore,the ringing interval input charge;f]is related to gg, the change in tank
capacitor chargever the ringinginterval, and to g, the chargeransferred tdhe outputduring
the ringing interval. Some of the input charge is storethertank capacitor, while the remainder
flows to the output.
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An integral form of Kirchoff's Voltage Law L
(KVL) is alsouseful. The total voltagearound a )
network loop is zero: t VL l +

%Vk =0 g1y 1O

C
The total volt-seconds applied over a giweterval -|- )
(ta,ts) across the elements of this loop must also be

Z€ero:

A =0
% k (3-16) v, areah1p

th
where Ak =f W(t) ot /
ta

When element k is amductor or transformery

has the physical interpretation ofvinding flux a
linkages.

The integralform of KVL relates terminal v area

volt-second quantities tathe change in tank

inductor flux linkages. For example, in /I
conjunction withthe determination of the average , \f/ ; >
output voltages of theparallel resonant converter ty tottg t

and the zero curremesonant switch, we wish to arealop
compute thevolt-seconds contained iny vduring

the ringing interval (see Fig. 3.8):

t : t
By KVL, we know that y = v; —\{. Therefore, a

A2p = A1p—Aip (3-18) Fig. 3.8. llustration of the use of the
(latte integral form of KVL.
where A1p = J w(t) dt
ta
tatip
AL = J WL (t) dt

ta

tatip
Aog = f o(t) ot (3-17)
ta

Therefore,the ringing interval outputolt-secondsA,g is related toA g, the change in tank
inductor flux linkages ovethe ringinginterval, and to\ g, thevolt-secondsapplied to the input
during the ringing interval. Some tfe inputvolt-secondsare stored inthe tankinductor, while
the remainder are applied to the switch output.
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Steady-state capacitor charge balance

When a capacitor operatedth periodic steady-statwaveforms,then the initialand final
values of the capacitor voltage waveform are identical. In consequence, no net charge is deposited
in the capacitor, and the integral of the capacitor current waveform over one cayglets zero.
The dc component of capacitor current is zero. Formally, this follows from the definition

ict) = cd"gt(t) (3-19)
Integration over one complete period T yields
ve(M - w(0) =1 f o(t) (3-20)
0
In periodic steady statec{T) = vc(0). Hence,
0 = f ic(t) dt (3-21)
0
Division by the period T then showisat the averagealue, <g>, or dc component, must also be
zero:
;
% f ic(t) dt = <ic> = 0 (3-22)
0

This isthe well-known principle of steady-state capacigmmp-second, or charge, balance. It is
true for any capacitor which operates with periodic steady-state waveforms.
i (2 For example, considdahe capacitiveoutput filter
i Ci + circuit of Fig. 3.9. Insteady state, nmet charge is
i (1) CD o v (t) § R deposited on capacitorQ@luring a switching period, and
T 3 hence the average rectifier output currensiequal to the
dc component | of the load current i(t). By Ohm’s law, the
Fig. 3.9 Capacitive filter circuit.  dc component V of the load voltage v(t) is V = IRience,
we have

V = <ix>R (3-23)
For this example, the input curren(}), is a rectified sinusoid
i2(t) = lp|singst) | (3-24)

whose average is

Ts
s =1 i -2
< =1 =2
15> Tsf Io(t) dt - lop
0 (3-25)
Substitution of this expression into Eq. (3-23) yields
= % lp R (3-26)
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A Output voltage ripple canalso be
i5(t) estimatedusing charge arguments.  InFig.
lp - 3.10, the capacitor currentwaveform is

sketched forthe case inwhich G- is large

enoughthat its voltage ripple (induced by the
switching harmonics inpft)) is small compared

wst  to the dc component V. Ithis case, the

ice(t) A voltage harmonics applied to resistor R are also
area = +g small, andhence by Ohm’s law the current
/7<‘ /\ / through R is essentialigc. Thereforethe dc
180° 360° . .
o 10§ t } T component of At) flows exclusively through
' ' \/ @st R, while theswitching harmonic of(t) flows
ared’= - g overwhelmingly through € The capacitor

current waveform is then given by

v CH) = 10 -1() O Lo singos) [ 2 Ize

(3-27)
The capacitor current is positivever the
interval 39.54° <wgt < 140.46°. During this

wsT interval, the capacitor voltage increases by an
amount Avc, from its minimum value to its

Fig. 3.10. Typical waveforms for the

circuit of Fig. 3.9. maximum value. This corresponds to an

increase in chargecqgiven by the integral of
Eq. (3-27) over this interval:

_ ' . 2, d(s)
dc f (| sin@st) | n)T)s

(3-28)
Evaluation of the integral yields
dc = 0.0673p Ts (3-29)
The peak-to-average capacitor voltage ripple is therefore
_ lop Ts i
Ave = 0.067 5 (3-30)
Or, in terms of the load current,
Ave = o.oszd% (3-31)

This gives a simple estimate which is useful for choosing the output filter capacitance. However, it
does notinclude the effects of capacitesr (equivalentseries resistance), whidan cause the
voltage ripple to be significantly larger than that predicted by Eq. (3-31).
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Steady-state inductor flux-linkage balance

When an inductor operates with periodic steady-stateeforms,then the initialandfinal
values of the inductor curremiaveformare identical. Inconsequence, noet flux linkage is
induced in the inductor, and the integral of the inductor voltage waveform ovepimpete cycle
is zero. The dc component of inductor voltage is zero. Formally, this follows from the definition

@) = Ld'('f) (3-32)
Integration over one complete period T yields
im-i© =1 f vL(D) dt (3-33)
0
In periodic steady statg,(il) =i_(0). Hence,
0 = f ic(t) dt (3-34)
0
Division by the period T then shows that the averagae, <y >, or dc component, must also be
zero:
;
% f vt dt= <y> =0 (3-35)
0

This is the well-known principle of steady-state industolt-second, or flux-linkage, balance. It
is true for any inductor which operates with periodic steady-state waveforms.

3.2. Normalization and Notation

The geometries of the state plgplets of the nextsectionsare simplified considerably
when the waveformare normalizedising a basenpedance Ryseequal to the tank characteristic
impedance R The normalizing base voltaggd.can be chosen arbitrarily, and is usually chosen
to be equal to the power input voltagg \Other normalizing base quantities can then be derived:

base impedance Rpase = Ry =VL/C

base voltage Vpase = Vg

base current lbase = Vbase/ Roase = Vg/ Ro

base power Pbase = Vbaselbase = Vg2 / Ro (3-36)

In the system of notation developed thte University of Colorado(CU), the symbol for a
normalized voltage contains the same subscripts and case as the original un-normalized voltage, but
the character “V” is replaced by “M”. For example,

M = V/ Vpase normalized load voltage

mc(t) = ve(t) / Vpase normalized tank capacitor voltage (3-37)
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For currents, “I” is replaced by “J":
J = 1/ base normalized load current

iL@® = iL(®) / lpase normalized tank inductor current (3-38)

When a converter containgransformer the base quantitieshould be referred tthe proper side
of the transformer by multiplication by the appropriate function of the transformer turns ratio.

Some other authorase the same normalizindgpase quantities, but denotermalized
variables using the subscript “n”. The symbol “q” is also sometimes used to temoiermalized
output voltage. Neither of these conventions is used here.

It is convenient to normalize frequency using the tank resonant frequenoy fto convert
time to angular form:

frase = fo = 1/ 2V LC  base frequency

wp = 1/VLC tank resonant angular frequency
F=1k/f normalized switching frequency
o = Wy ty angular length of intervalxt (3-39)

where g is the switching frequency, and F 1/fs is the switching periodThe following notation
is also traditional in the series resonant converter literature:

Yy=wTs/2 =m1/F angular length of one half switching period
o = oty diode conduction angle
B=uwotg transistor conduction angle (3-40)

When performingexact time-domain or state-plaa@alysis, Q isdefined using the actual load
resistance R (as opposed to the effective resistanckdRapter 2):

Q=R/R for the series resonant converter
Q=R/R for the parallel resonant converter (3-41)
<—E =3 > - E = 1—

-— efc. |<-k: 2| -—— k= 1—>|<—k: 00—

f
1o 1fo fo >

Fig. 3.11. Switching frequency ranges over which various mode indices k and
subharmonic numbei&occur.

Final definitions for the series resonant converter are the mode index k and subharmoni&number

as follows. The continuous conduction mode k occurs over the frequency range

fo < fy < fo 1 - F<l
K+l kK o kel K (3-42)

for integer k. The subharmonic number is then
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R C0)
&= k= (3-43)
For example, continuousonduction mode operation at switching frequengy 0.4 § would
imply that k = 2 and = 3.

3.3. State Plane Trajectory of a Series Tank Circuit

Let usnext examine the time-domaiasponse of a series
resonant circuit. A series tank circuéxcited by a constant
voltage V4, is shown in Fig. 3.12. As shown time nextchapter, Vy C+>

the series resonant convertean be reduced to a circuit diis +
form duringeachsubinterval. The state equations afis circuit V_C
are: _
L dil® Ve —ve(t) Fig. 3.12. Series tank circuit,
OIdt (3-44) excited by constant
C Vc?t(t) = i) voltage Vf.
Let us normalize the state equations according to the conventions of section 3.2. Note that
_ Ro -1
L =" C= -+ -
wo and wo Ro (3-45)

wherewy is the tank angularesonant frequency antyRs the tank characteristic impedance, as
defined in Egs. (3-36) and (3-39Rivision of Egs. (3-45) by Y and use ofhe identitieg(3-46)
and (3-36) - (3-39) yields

dj(t
1 JL() — MT_rTb(t
wp dt
1.dme®) _ (3-46)
w  dt L
where Mr = V1 /Vg. The solution of this second-order system of linear differential equations is
mc(t) = A cos@xt - §) + Mt
jiL(®) = —Asinxt - ¢) (3-47)
wherethe constants A an@ depend on boundary conditions. cin beseenthat thesolution

contains a déerm nx = My (or, ¢ = Vr) which representthe dcsolution ofthe circuit, plus a

sinusoidal term which represents the ac ringing response of the resonant tank.
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L

X = X+ A cosg)
y = Yo—Asin@)

Fig. 3.14. Normalized state plane trajectory
for the circuit of Fig. 3.12, corresponding

Fig. 3.13. Parametric representation of a circle. 10 Eq. (3-47).

The normalized state plane

The normalized state plane is a plot af(thvs. j (t), with t as anmplicit parameter. As
shown in Fig. 3.14the solution (3-47)above describes @rcle in the normalized stafgane, of
radius A. If we let the radius go to zero, we can see thairtie is centered at = M+, j. = 0,
which coincides witithe dcsolution ofthe circuit. Astime increasesthe solution moves in the
clockwise direction around theenter;this must be true becautiee capacitor is iseries with the
inductor, and ifthe normalized inductor current positive, then the capacitor charges ang¢ m
increases. In generdhe normalized state plane trajectory of an undamped two-element resonant
circuit is circular and is centered at the dc solution ofctrmiit. The radius depends athe initial
values of | and ng, and remains constant.

It can also be seen frofg. (3-47)andFig. 3.14that time is related to thenglethrough
which the trajectory moves. During an intervaltiofe t;, the trajectorymoves through aarc of
anglewgt;. So the length of ringing intervals atigbir angles in the normalized state plane can be
easily related.Note, this is not necessarily trder systemsother than theesonant tanlcircuit
considered here.

The tank circuit of the parallel resonant converter

The name of the parallel resonant convectar presensome confusionbecause although
its load is connected iparallel with the tank capacitor, the tank capacitor and inductor are
effectively in series. In consequencthe time domainresponse anchormalized state plane
trajectory are quite similar to that of the series resonant converter tank circuit.
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L As shown in chapter 5, during each
subinterval of the operation of tiparallelresonant
converter, itstank circuit can be reduced to a
V1 CD C = V¢ (T) I+ configuration of theform shown in Fig. 3.15.
- This differs fromthe circuit of Fig. 3.12 only by
the addition of constant curresburce +. The

i +

Fig. 3-1?- :[ranll: circuit, drive\r/;byé effect of this extra source is to shifie dc solution
constant voltage sourcey\Van .
constant current sourcer.| of the circuit, and hence alsthe center of the

circular trajectory.

The state equations of the circuit are

at Vr = ve(t
cd"dct(t) - i) -k (3-48)
In normalized form, the state equations become
dj.(t
1 JL() - MT—I'Tb(t
wp dt
LA - g-5 )
wp dt L

where 3 = k Ro/ Vg The solution is
mc(t) = Mr+ (Mg(0) — Mr) cosgod - ) + (jL(0) — &) sin(yt - )
iL® = F+((0) - ¥) costoot - §) — (M(0) — My) sin(t - §) (3-50)

As shown in Fig. 3.16this represents aircular

_ . arc centered at the dolution ng = My, j. = Jr,

1.0 whose radius r depends dhe initial conditions
and is given by

I r =+ (me(0) — M2+ (L(0) - 3)?  (3-51)

As in the case of the circuit of Fig.12, the length

of ringing intervals and their angles in the
normalized state plane can be easily related.
During an interval ofime t;, the trajectorymoves
through an arc of angtegt;.

mc(0) My Mc

Fig. 3.16 Normalized state plane
trajectory for the circuit of Fig. 3.15.

All of the fundamental concepts necessianyan exactanalysis ofthe series,parallel, and
other resonant converters havew beendiscussed. Various arguments involving thigow of
charge and flux-linkages can be used to relate thewankforms tathe average terminal voltages
and currents ofhe converter. The waveformscan benormalized, which causdke state plane
trajectories toassumecircular paths. As seen ithe nexttwo chaptersthese concepts allow
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closed-form analytical solution of the characteristics of the series and parallel resonant converters in
a direct manner. They also aid in the understanding of resonant switch converters.
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