Switching Loss Estimation in a Buck-Boost Converter

Figure 1: Noninverting Buck-Boost Converter

The noninverting buck-boost converter of Fig. 1 is switched using the given logic-level signals, s_1 and s_2 . The topology is used to design a power converter with the following characteristics

- Input voltage $V_g = 400 \text{ V}$
- Output voltage V = 200 V
- Output resistance R = 40
- Switching frequency $f_s = 500 \text{ kHz}$

All devices, M_1 - M_4 , are implemented with a silicon MOSFET. Its parasitics are summarized in the attached datasheet. Note that, as with all datasheets, not all of the information contained is explicitly necessary for the calculations here. Consider a "slow" gate driver with $V_{GS} = 10 \text{ V}$ and $I_g = 1 \text{ A}$. Both L and C_{out} are large. The dead times are longer than any switching transient dynamics, but you may assume that $t_{d1} + t_{d2} << T_s$.

- a) Neglecting all nonidealities and losses, solve for the converter duty cycle D, which is the portion of each switching period in which s_1 is high.
- b) Solve for the conduction loss due to devices' on-resistance.
- c) Sketch the drain-to-source voltage, gate-to-source voltage, and drain current of the following MOSFETs during the specified transition. Label all salient features
 - i) M_1 turn on
 - ii) M_3 turn on
- d) Solve for the total switching loss due to (if applicable)
 - i) device output capacitance C_{oss}
 - ii) *v-i* overlap due to the gate drive
 - iii) gate switching
 - iv) reverse recovery of the devices' body diodes
- e) Solve for the total power dissipation of each individual device, M_1 - M_4
- f) Estimate the power required from a 10 V auxiliary supply for this circuit.