ECE581

Design of a DAB Converter

The dual active bridge (DAB) converter is shown in Fig. 1. The converter operates with phase-shift modulated control, as shown in Fig. 1. Consider the following design of the converter:

- $V_g = 100 \text{ V}$
- V = 100 V
- All devices Q_1 - Q_8 have an effective output capacitance of $C_{ds} = 200 \text{ pF}$
- $n_t = 1$ • $f_s = 1 \text{ MHz}$

Figure 1: DAB converter

- 1. Sketch the j_l - m_p and j_l - m_s state planes for operation at P_{out} large enough such that all devices obtain ZVS and the phase shift $t_\beta > 0$. Solve the state planes for a set of equations describing circuit operation; complete the averaging step to solve for the normalized average output current, J.
- 2. Solve an expression for the normalized *RMS* output current J_{rms} (*Note: see Appendix A.2 of Fundamentals of Power Electronics*).
- 3. Manipulate the equations from (1) so that you obtain a single equation of the form:

$$\mathbf{J}=f(F,J_{pk})$$

Plot the resulting equation on J_{pk} -J axes, for $F = 0.1 \ 0.5$ and 1. Plot only the values of J_{pk} over which this solution is valid.

- 4. Design the tank (i.e. select L_l) so that minimum conduction losses occur while maintaining ZVS down to an output power of $P_{min} = 50$ W. What is *F*?
- 5. What is the maximum power that can be delivered to the load with the design from (4)?

(continued on next page)

The following devices are available for implementing Q_1 - Q_8

	$R_{ds,on}$ [m Ω]	C_{ds} [pF]	V_{bv} [V]
MOSFET A	100	200	200
MOSFET B	15	4000	200
MOSFET C	50	400	200
MOSFET D	500	40	200

For each MOSFET, L_l is designed so that $P_{min} = 50$ W. You may assume that conduction losses can be modeled by the ideal rms currents solved for in (2).

6. Which MOSFET results in the smallest losses in-circuit, when operated at $P_{out} = 50$ W?