Course Schedule

Course Planning

Midterm Exam

- 5-day take-home exam
 - Week of Oct 23-27th
 - Absolutely no collaboration
 - No materials other than notes and course website

- Covers material to date, HWs 1-8
 - Switching Loss
 - Nonlinear C_{oss}
 - State Plane Analysis

1

TINY BOX CHALLENGE

Competition Specifications

The winning converter will be the unit which achieves the highest power density, i.e. fits in the smallest rectangular volume, while meeting the following specifications.

Parameter	Requirement	Comment
Voltage Input	48 Vdc	
Maximum Output Power	12 W	
Output Voltage	1.2 ± 0.1 Vdc	
Output Ripple Voltage	< 2%	Measured as $V_{pk-pk'}/V_{avg}$ from the DC supply, in steady state, at full output power
TPE Efficiency	> 85%	Measured using TPE method ¹
No-load Power Loss	< 3W	Measured with load disconnected, but output voltage within specified range
Volume	< 2 in ³	Volume of minimum rectangle enclosing power stage

¹Tennessee Power Electronics (TPE) efficiency is a weighted power efficiency defined as:

$$\eta_{TPEF} = 0.1 \eta_{Pout=0.25 \cdot P_{max}} + 0.15 \eta_{Pout=0.5 \cdot P_{max}} + \underbrace{0.25 \eta_{Pout=0.75 \cdot P_{max}} + 0.5 \eta_{Pout=P_{max}}}_{+0.15 \eta_{Pout=0.15 \cdot P_{max}}} + \underbrace{0.15 \eta_{Pout=0.15 \cdot P_{max}}}_{+0.15 \eta_{Pout=0.15 \cdot P_{max}}} + \underbrace{0.15 \eta_{Pout=0.15 \cdot P_{max}}}_{+0.15 \eta_{Pout=0.15 \cdot P_{max}}} + \underbrace{0.15 \eta_{Pout=0.15 \cdot P_{max}}}_{+0.15 \eta_{Pout=0.15 \cdot P_{max}}}$$

Example Application

How Volume is Measured

External Power Connections

Additional Details

- Full competition specifications and example testing report on course webpage
- No regulation requirements
- Deliverables:
 - Written design comparison of 3 topologies (11/10)
 - PCB Layout of single design (11/17)
 - Testing Report of prototype (12/6)

Design and Comparison Report (11/10)

- 1. Select three topologies from the table and compare based on
- II. Efficiency at full power

 | Solution | Power loss at zero load | III. Output voltage ripple | IV. Volume of main passive components

	Class I	Class II	Class III	Class IV
Definition	Two-switch PWM topologies*	Isolated variants of PWM topologies	AC-link topologies	Any topology not conforming to Class I-III
Examples	Buck, Boost, Buck- Boost, Cuk, SEPIC, etc.	Flyback, Forward, push-pull, half- bridge, full-bridge	DAB, DAHB, SRC, LLC, Full Bridge, etc.	Switched capacitor, sigma-delta, multilevel, etc.
Required number	0	≤1*		1

- * Fully small-ripple, hard-switched Class-II topologies may not be used.
- 2. Select (and justify) one topology, and provide a complete design including (but not limited to)

 - I. Power DevicesII. Gate Driver CircuitryIII. Passive Devices and implementation
 - IV. Switching Frequency

L21 - Oct. 16	L22 - Oct. 18	L23 - Oct. 20			
		Homework 8 Due			
L24 - Oct. 23	L25 - Oct. 25	L26 - Oct. 27			
	Midterm Exam	Midterm Exam			
Oct. 30	Nov. 1	L27 - Nov. 3			
L28 - Nov. 6	L29 - Nov. 8	L30 - Nov. 10 Design Comparison Report			
L31 - Nov. 13	L32 - Nov. 15	L33 - Nov. 17 PCB Layout Due			
L34 - Nov. 20	Nov. 22	Nov. 24 Thanksgiving Break			
L35 - Nov. 27	L36 - Nov. 29	L37 - Dec. 1			
L38 - Dec. 4	L39 - Dec. 6 Testing Report Due	Dec. 8 Final Exam Period Final Exam			

 $\overline{}$