Types of Capacitors

Ceramic Capacitor Impedance and Resistance

MLCC

• Capacitor codes, e.g. XZR or <u>COG</u> standardized to define stability over temperature

2.2µF, 50V X7R (Class-II) 0603 footprint

Remaining: 7.2% at full voltage

10nF, 50V COG (Class-I) 0603 footprint

10nF, 50V X7R (Class-II) 0603 footprint

10nF, 50V COG (Class-I) varied footprint

Class-II Capacitor Hysteresis Loss

TABLE II Employed components

Componen	t Dielectric	Manufacturer	Part Number	$V_{\rm n}$	$C_{\rm n}$	N(parallel)	$C_{\rm tot}$	DF
$\xrightarrow{C_{\text{cal}}} C_{\text{ref}}$ $\xrightarrow{C_{\text{DUT}}} C_{\text{DUT}}$	C0G C0G X7R	TDK TDK Knowles Syfer	CAA572C0G2J204J640LH C5750C0G2A154J230KE 2220Y1K00474KETWS2	650 V 100 V 1 kV	$200{ m nF}\ 150{ m nF}\ 470{ m nF}$	2 32 1	400 nF 4.8 μF 470 nF	< 0.02 % < 0.03 % > 0.71 %

Fig. 6. U - Q hysteresis recorded at 50 Hz for a range of excitation voltages for (a) the calibration capacitor, which shows no hysteresis and has a constant $C_Q = C_d$ at all voltages, and (b) the DUT, which exhibits increasing hysteresis and losses with increasing excitation voltage. C_Q highlighted for $U_{ac} = 270 \text{ V}_{rms}$. Measured U - Q curves are identical at 50 Hz and 100 Hz.

Fig. 15. Losses per cycle versus normalized, by (8), dV/dt for the three studied devices and two additional "extreme performance" devices. The red outline around the TPH3202LS results indicates applied voltages under 300 V and $\beta = 1.46$ in (8). All recorded measurements are included here. There are no measurements for the TPH3202LS 30 MHz Φ_2 , as the Φ_2 wave generator could not be tuned to maintain ZVS with the TPH3202LS device and C_{REF} in parallel.

Transistor Structure and Material

INDUCTOR AC LOSSES

Tiny Box Comments

- Many nonlinear and complex loss phenomena in magnetics
- Online tools from manufacturers are usually poor predictors of performance with large, high-frequency ripple

Skin Effect in Copper Wire

- Current profile at high frequency is exponential function of distance from center with characteristic length δ

AC Resistance

$$A_{w,eff} = \pi r_w^2 - \pi (r_w - \delta)^2$$

$$R_{ac} = \rho \frac{\iota_b}{A_{w,eff}}$$

Skin Depth

Wire diameter

Fig. 13.23 Penetration depth δ , as a function of frequency *f*, for copper wire.

Proximity Effect

• In *foil* conductor closely spaced with $h >> \delta$, flux between layers generates additional current according to Lentz's law.

$$P_1 = I_{L,rms}^2 R_{ac}$$

Power loss in layer 2:

$$P_{2} = I_{L,rms}^{2}R_{ac} + (2I_{L,rms})^{2}R_{ac}$$

$$P_{2} = 5P_{1}$$

 Needs modification for non-foil conductors

Simulation Example

- AWG#30 copper wire
 - Diameter *d* = 0.294 mm
 - $d = \delta$ at around 50 kHz
- 1:1 transformer
 - Primary and secondary are the same, 30 turns in 3 layers
- · Sinusoidal currents,

$$I_{1rms} = I_{2rms} = 1 \text{ A}$$

Numerical field and current density solutions using FEMM (Finite Element Method Magnetics), a free 2D solver, http://www.femm.info/wiki/HomePage

Flux density magnitude

	9.500e-003 : >1.000e-002				
	9.000e-003: 9.500e-003				
	8.500e-003: 9.000e-003				
	8.000e-003: 8.500e-003				
	7.500e-003: 8.000e-003				
	7.000e-003: 7.500e-003				
	6.500e-003: 7.000e-003				
	6.000e-003: 6.500e-003				
	5.500e-003: 6.000e-003				
	5.001e-003: 5.500e-003				
	4.501e-003: 5.001e-003				
	4.001e-003: 4.501e-003				
	3.501e-003: 4.001e-003				
	3.001e-003: 3.501e-003				
	2.501e-003: 3.001e-003				
	2.001e-003: 2.501e-003				
	1.501e-003 : 2.001e-003				
	1.001e-003: 1.501e-003				
	5.010e-004 : 1.001e-003				
	<1.000e-006: 5.010e-004				
Density Plot: B , Tesla					

Current density magnitude

Frequency: 1 kHz

Current Density

Frequency: 100 kHz

Total copper losses 1.8 larger than at 1 kHz

Frequency: 1 MHz

Total copper losses 20 times larger than at 1 kHz

Frequency: 10 MHz

Very significant proximity effect Total copper losses = <u>65 times</u> larger than at 1 KHz

Litz Wire

- Braided, insulated strands with $d << \delta$
- Now has strand/bundle/wire level ac resistance effects
- Significantly lower resistance in a bounded frequency range

Patrick Fouassier, "Practical Guidelines for Litz Wire Selection and AC Copper Losses Estimation" C. Sullivan, "High-Frequency Magnetics Design: Overview and Winding Loss"

Fringing

• Near air gap, flux may bow out significantly, causing additional eddy current losses in nearby conductors

Physical Origin of Core Loss

- Magnetic material is divided into "domains" of saturated material
- Both Hysteresis and Eddy Current losses occur from domain wall shifting

Inductor Core Loss

• Governed by Steinmetz Equation:

$$P_{v} = K_{fe} f_{s}^{\alpha} (\Delta B)^{\beta}$$
 [mW/cm³]

• Parameters K_{fe} , α , and β extracted from manufacturer data

 $P_{fe} = P_v A_c l_m \text{ [mW]}$

• $\Delta B \propto \Delta i_L \rightarrow \text{small losses}$ with small ripple

Steinmetz Parameter Extraction

Ferroxcube Curve Fit Parameters

Power losses in our ferrites have been measured as a function of frequency (f in Hz), peak flux density (B in T) and temperature (T in $^{\circ}$ C). Core loss density can be approximated ⁽²⁾ by the following formula :

$$P_{\text{core}} = C_m \cdot f^{x} \cdot B^{y}_{\text{peak}}(\text{ct}_0 - \text{ct}_1 T + \text{ct}_2 T^2) \quad [3]$$
$$= C \quad C - f^{x} \cdot B^{y}_{\text{peak}} \quad [mW/m^3]$$

		$- \mathbf{C}_m \cdot \mathbf{C}_T \cdot \mathbf{I} \cdot \mathbf{D}_{peak}$					
ferrite	f (kHz)	Cm	X	у	ct ₂	ct ₁	ct ₀
3C30	20-100	7.13.10 ⁻³	1.42	3.02	3.65.10-4	6.65.10 ⁻²	4
	100-200	7.13.10 ⁻³	1.42	3.02	4.10 ⁻⁴	6.8 .10 ⁻²	3.8
3C90	20-200	3.2.10 ⁻³	1.46	2.75	1.65.10-4	3.1.10 ⁻²	2.45
3C94	20-200	2.37.10 ⁻³	1.46	2.75	1.65.10-4	3.1.10-2	2.45
	200-400	2.10-9	2.6	2.75	1.65.10-4	3.1.10-2	2.45
3F3	100-300	0.25.10 ⁻³	1.63	2.45	0.79.10-4	1.05.10 ⁻²	1.26
	300-500	2.10 ⁻⁵	1.8	2.5	0.77.10-4	1.05.10 ⁻²	1.28
	500-1000	3.6.10-9	2.4	2.25	0.67.10-4	0.81.10 ⁻²	1.14
3F4	500-1000	12.10-4	1.75	2.9	0.95.10 ⁻⁴	1.1.10-2	1.15
	1000-3000	$1.1.10^{-11}$	2.8	2.4	0.34.10-4	0.01.10 ⁻²	0.67

Table 1: Fit parameters to calculate the power loss density

 \downarrow

Simple Formula for Square-wave voltages:

 $P_{NSE} = k_N (2f)^{\alpha} (\Delta B)^{\beta} \left(D^{1-\alpha} + (1-D)^{1-\alpha} \right)$ (10)

where f is the operating frequency; $\Delta B/2$ is the peak induction; D is the duty ratio of the square wave voltage.

Note: The second and third harmonics are dominant at moderate values of duty ratio D. For extreme values of D (95%), a higher value of α could give better matching to the actual losses.

Van den Bossche, A.; Valchev, V.C.; Georgiev, G.B.; , "Measurement and loss model of ferrites with non-sinusoidal waveforms,"

K. Venkatachalam; C. R. Sullivan; T. Abdallah; H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters"

C. Sullivan, "Overview of core loss prediction (and measurement techniques) for non-sinusoidal waveforms"

TENNESSEE KNOXVILLE