
Ali Abur
Northeastern University, USA

State Estimation

September 16, 2015
Fall 2015 CURENT  Course Lecture Notes



Operating States of a Power System

Power systems operate in one of three operating states:

Normal state:
Loads = Generation - Losses 
Operational constraints are NOT violated.

• Secure normal:  No Action

• Insecure normal: Preventive control action (SCOPF)

Emergency state:
Operating constraints are violated 
Requires immediate corrective action.

Restorative state:
Load versus generation balance is to be restored 
Requires restorative control actions.
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Operating States of a Power System
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Classical Role of State Estimation
Facilitating Static Security Analysis 

Security Analysis:

Monitoring the system, identifying its operating state, determining 
necessary preventive actions to make it secure.

Monitoring involves RTU's  to measure and telemeter various quantities 
and a state estimator

Measured quantities:

Flows: line power flows
Phasor Magnitude: bus voltage and line current magnitudes
Phasor Angle: phase angle for bus voltage and line current
Injections: generator outputs and loads
Status: circuit breaker and switch status information, transformer tap
positions
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State Estimation Functions
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Topology processor: 
Creates one-line diagram of the system using the detailed circuit breaker status 
information.

Observability analysis: 
Checks to make sure that state estimation can be performed with the available set 
of measurements.

State estimation: 
Estimates the system state based on the available measurements.

Bad data processing: 
Checks for bad measurements.  If detected, identifies and eliminates bad data.  

Parameter and structural error processing:  
Estimates unknown network parameters, checks for errors in circuit breaker status.



Analog Measurements
Pi , Qi, Pf , Qf , V, I, θk, δki

Circuit Breaker Status

State 
Estimator

(WLS)

Bad Data
Processor

Network
Observability

Analysis

Topology 
Processor

V, θ

Assumed or Monitored

Pseudo Measurements
[ injections: Pi , Qi ]

Load Forecasts
Generation Schedules

State Estimation and Related Functions
Weighted Least Squares (WLS) Estimator
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Communication Infrastructure
SCADA / EMS Configuration 
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Energy Management System Applications
SCADA / EMS Configuration 
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Power System State Estimation
Problem Statement

• [z] : Measurements
P-Q injections
P-Q flows
V magnitude, I magnitude

• [x] : States
V, θ, Taps (parameters) 
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• EXAMPLE:

• [z] = [ P12; P13; P23; P1; P2; P3; V1; Q12; Q13; Q23; Q1; Q2; Q3 ]
m = 13 (no. of measurements)

• [x] = [ V1; V2; V3; θ2; θ3 ]
n = 5 (no. of states) 



Network Model
Bus/branch and bus/breaker Models 
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Topology
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Measurements
Bus/branch and bus/breaker Models 
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Bus/branch                                               Bus/Breaker

V



Measurement Model
[zm] = [h([x])] + [e]

State Estimator

z1+e1

z2+e2

z3+e3

zi : true measurement
ei : measurement error
ei =    es +     er

systematic random
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• ei ~ N ( 0, σi
2 )

• Holds true if:
es = 0, er ~ N ( 0, σi

2 )

• If es 0, then E(ei)    0, 
i.e. SE will be biased !



Assumptions

Measurement Model
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Maximum Likelihood Estimator (MLE)
Likelihood Function
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Consider the random variables  X1, X2, …, Xn with a p.d.f of f(X | θ), where
θ is unknown.

The joint p.d.f of a set of random observations 
x =  {  x1, x2, … , xn }

will be expressed as:

fn( x | θ) = f (x1 | θ) f(x2 | θ) … f(xn | θ ) 

This joint p.d.f is referred to as the Likelihood Function.

The value of θ, which will maximize the function fn( x | θ) will be called the 
Maximum Likelihood Estimator (MLE) of θ.



Maximum Likelihood Estimator (MLE)
Maximum Likelihood Estimator
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Maximum Likelihood Estimator (MLE)
Weighted Least Squares (WLS) Estimator
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Given the set of observations z1, z2, … , zn MLE will be the solution to the 
following: 

The solution of the above optimization problem is called the 
weighted least squares (WLS) estimator for x.



Maximum Likelihood Estimator (MLE)
Weighted Least Squares (WLS) Estimator
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Measurement Model

Given a set of measurements, [z]
and the correct network topology/parameters:

[z] = [h ([x]) ] + [e]

Measurements:

Known !
They are measured
Contain errors

Measurement
Errors:

Unknown  !
Can not be directly
measured
or computed

True System States:

Unknown !
Can be measured
or estimated
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Measurement Model

Following the state estimation, the estimated 
state will be denoted by [   ]:

[z] = [h ([   ]) ] + [r]

Measurements:
They are measured
Contain errors

Measurement
Residuals:
Computed

Estimated System 
States
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x̂
x̂



Simple Example

r1

r2 r3

r4

h

Z

h1 h2 h3 h4

Z = h θ + e

: ESTIMATED MEASUREMENT : MEASURED VALUE

ri : MEASUREMENT RESIDUAL = Z – h θ*

SLOPE=θ*
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z1

z3

z2
z4

z1 z2 z3 z4

1.0 / 0 1.0 / θ



Weighted Least Squares (WLS) Estimation
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What are weights, wi ?

How are they chosen ?
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i Assumed error variance of measurement “i”.
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Network Observability
Definitions
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Fully observable network:

A power system is said to be fully observable if voltage
phasors at all system buses can be uniquely estimated
using the available measurements.



Network Observability
Necessary and Sufficient Conditions
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Measurement Classification
Types of Measurements
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1. CRITICAL MEASUREMENTS

WHEN REMOVED, THE SYSTEM BECOMES UNOBSERVABLE

2. REDUNDANT MEASUREMENTS

CAN BE REMOVED WITHOUT AFFECTING NETWORK OBSERVABILITY



Types of Measurements
Critical Measurements
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CRITICAL MEASUREMENTS

• If they have gross errors, such errors can not be detected

• Measurement residuals will always be equal to zero, i.e. critical 
measurements will be perfectly satisfied by the estimated state

• If they are lost or temporarily unavailable, the system will no longer be 
observable, thus state estimation can not be executed



Network Observability
Definitions
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Unobservable branch:

• If the system is found not to be observable, it will imply
that there are unobservable branches whose power flows
can not be determined.

Observable island:

• Unobservable branches connect observable islands of
an unobservable system. State of each observable island
can be estimated using any one of the buses in that island
as the reference bus.



Network Observability
Definitions
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RED LINES: Unobservable Branches

Observable 
Islands



Merging Observable Islands
Pseudo-measurements
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If the system is found unobservable, use pseudo-measurements in order to 
merge observable islands.

Pseudo-measurements:
• Forecasted bus loads
• Scheduled generation

Select pseudo-measurements such that they are critical.

Errors in critical measurements do not propagate to the residuals of the other 
(redundant) measurements.



ISLAND 1 ISLAND 2

ISLAND 3

Observable Islands
Unobservable Branches

© Ali Abur



Robust (resilient) Estimation
Resiliency: A Smart Grid Requirement
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If an estimator remains insensitive to a finite number of errors in the measurements, 
then it is considered to be robust.

Example:  Given z = { 0.9, 0.95, 1.05, 1.07, 1.09 }, estimate z using the following 
estimators:

Solution:
Replace z5=1.09 by an infinitely large number z’5 = ∞.

The new estimate will then be:
This estimator is NOT robust.

Replace both z5 and z4  by infinity.

The new estimate will then be:
This is a more robust estimator than the one above.
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Robust Estimation
M-Estimators
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M-Estimators (Huber 1964)

Consider the problem:

Where               is a chosen function of the measurement residual 

In the special case of the WLS state estimation:
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Robust Estimation
M-Estimators
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Some Examples of M-Estimators
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Robust Estimation
LAV Estimator Example
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Measurement Model: 5,...,12211  iexAxAz iiii

Measurements:
i Zi Ai1 Ai2

1 -3.01 1.0 1.5
2 3.52 0.5 -0.5
3 -5.49 -1.5 0.25
4 4.03 0.0 -1.0
5 5.01 1.0 -0.5

LAV estimate for x
and measurement residuals: ];02.0;02.0;0125.0;[

]010.4;005.3[

0.00.0


T

T

r

x

LAV estimate for x
and measurement residuals:

CHANGE measurement 5 from 5.01 to 15.01 ( Simulated Bad Datum ):

]98.9;01.0;045.0;;[

]02.4;02.3[

0.00.0


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T
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Robust Estimation
LAV Estimator Example
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Measurement Model: 5,...,12211  iexAxAz iiii

Measurements:
i Zi Ai1 Ai2

1 -3.01 1.0 1.5
2 3.52 0.5 -0.5
3 -5.49 -1.5 0.25
4 4.03 0.0 -1.0
5 15.01 1.0 -0.5

LAV estimate for x
and measurement residuals: ];02.0;02.0;0125.0;[

]010.4;005.3[
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LAV estimate for x
and measurement residuals:
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Bad Data Detection

Chi-squares        Test

Consider X1, X2, … XN, a set of N independent random variables where: 

Xi ~ N(0,1) 

Then, a new random variable Y will have a       distribution with N degrees of 
freedom, i.e.:

© Ali Abur
2

2

1

2 ~ N

N

i
i YX 





2



Bad Data Detection
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Now, consider the function

and assuming:
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f(x) will have a        distribution with at most  (m-n) degrees of freedom. 

In a power system, since at least  n measurements will have to satisfy the 
power balance equations, at most (m-n) of the measurement errors will be 
linearly independent.
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Chi-squares Distribution:

Bad Data Detection
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Bad Data Detection

Detection Algorithm         --Test © Ali Abur
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Solve the WLS estimation problem and compute the objective function:

Look up the value corresponding to p (e.g. 95 %) probability and (m-n) 
degrees of freedom, from the Chi-squares distribution table.  

Let this value be                             Here:

Test if

If yes, then bad data are detected. 

Else, the measurements are not suspected to contain bad data.
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Bad Data Identification

Properties of Measurement Residuals © Ali Abur

Linear measurement model:

K is called the hat matrix. Now, the measurement residuals can be 
expressed as follows:

where S is called the residual sensitivity matrix.
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Bad Data Identification

Distribution of Measurement Residuals © Ali Abur

The residual covariance matrix Ω can be written as:

Hence, the normalized value of the residual for measurement i will be given by:
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Bad Data Identification

Classification of Measurements © Ali Abur

Measurements can be classified as critical and redundant(or non-critical) with 
the following properties:

• A critical measurement is the one whose elimination from the measurement set 
will result in an unobservable system.

• The row/column of S corresponding to a critical measurement will be zero.

• The residuals of critical measurements will always be zero, and therefore 
errors in critical measurements can not be detected.

It can be shown that if there is a single bad data in the measurement set 
(provided that it is not a critical measurement) the largest normalized residual will 
correspond to bad datum.



Bad Data Identification / Elimination
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Two commonly used approaches:

1. Post-processing of measurement residuals – Largest normalized residuals

2. Modifying measurement weights during iterative solution of WLS estimation 



Bad Data Identification

Largest Normalized Residual Test © Ali Abur

Steps of the largest normalized residual test for identification of single and non-
interacting multiple bad data:

Compute the elements of the measurement residual vector :

Compute the normalized residuals

Find k such that           is the largest among all                             .

If          > c, then the k-th measurement will be suspected as bad data.  

Else, stop, no bad data will be suspected.  Here, c is a chosen identification 
threshold, e.g. 3.0.

Eliminate the k-th measurement from the measurement set and go to step 1.
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Use of Synchrophasor Measurements
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• Given enough phasor measurements, state estimation problem will 
become LINEAR, thus can be solved directly without iterations
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: Power Injection : Power Flow  : Voltage Magnitude
: PMU

Placing PMUs: 
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: Power Injection : Power Flow  : Voltage Magnitude
: PMU

Exploiting zero injections 
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Use of Synchrophasor Measurements
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• Given at least one phasor measurement, there will be no need to use a 
reference bus in the problem formulation
• Given unlimited number of available channels per PMU, it is sufficient to 
place PMUs at roughly 1/3rd of the system buses to make the entire system 
observable just by PMUs. 

Systems No. of zero 
injections

Number of  PMUs

Ignoring zero
Injections

Using zero 
injections

14-bus 1 4 3

57-bus 15 17 12

118-bus 10 32 29



Merging Observable Islands with PMUs
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Performance Metrics
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• State Estimation Solution

• Accuracy:

Variance of State = inverse of the gain matrix, [G]-1
= E[ (x – x*) (x – x*)’ ]

• Convergence:

Condition Number = Ratio of the largest to smallest eigenvalue

Large condition number implies an ill-conditioned problem.



Performance Metrics
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• Measurement Design

• Critical Measurements:

Number of critical measurements and their types

• Local Redundancy

Number of measurements incident to a given bus

• (N-1) Robustness

Capability of the measurement configuration to render a fully 
observable system during single measurement and branch losses 



Performance Metrics
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• Measurement Quality

• Performance Index (WLS objective function):

Weighted sum of squares of residuals.  Has a Chi-Squares 
distribution. Large numbers imply presence of bad data in the 
measurement set.

• Largest Absolute Normalized Residual:

If larger than 3.0, the measurement corresponding to the largest 
absolute value will be suspected of gross errors.

• Sample variance (Based on historical data):

Measurement weights are based on sample error variances 
calculated according to historical data and estimation results. They 
reflect  the quality of individual measurements.  



Summary
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• State Estimation and its related functions are 
reviewed.
• Importance of measurement design is illustrated.
• Commonly used methods of identifying and 
eliminating bad data are described.
• Impact of incorporating phasor measurements on 
state estimation is briefly reviewed.
• Metrics for state estimation solution, 
measurement design and measurement quality are 
suggested.



Power Education Toolbox (P.E.T)
Power Flow and State Estimation Functions
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Free software to:
Build one-line diagrams of power networks
Run power flow studies
Run state estimation

http://www.ece.neu.edu/~abur/pet.html

Thank You

Any 
Questions?
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