ECE692

Steady-State Analysis of a Time-Invariant SRC

In this problem, consider the same time-invariant SRC from Homework #2, shown in Fig. 1 and Fig. 2. You may re-use your state space description from Homework #2, or use the model posted in the solutions. Note that **A** is non-singular.

Fig. 1: Series Resonant Converter

Fig. 2: Time-Invariant Circuit Model of SRC

Given an initial condition vector for the states at the beginning of a switching period $\mathbf{X}_0 = \mathbf{x}(t=0)$, the states $\mathbf{X}_{\varphi} = \mathbf{x}(t=t_{\varphi})$ are given by

$$\boldsymbol{X}_{\varphi} = e^{At_{\varphi}}\boldsymbol{X}_{0} + A^{-1}(e^{At_{\varphi}} - \boldsymbol{I})\boldsymbol{B}\boldsymbol{u}_{1}$$

- a) Using the same approach, write an expression which uses an initial condition $X_0 = x(t=0)$ to solve the states at $t = T_s/2$
- b) Using results from (a), write a closed expression form expression for X_0 in steady-state for any given t_{φ}
- c) Using the results from (b) and the knowledge that A is non-singular, write a closed-form (algebraic) expression for the average input and output dc power as a function of the results (a), (b), and X_o

Using the above analysis (and without employing lsim() or any other time-stepping integration), examine the following in MATLAB

d) Generate a single plot of the output power and efficiency that the converter exhibits in steady state for $0 \le t_{\varphi} \le T_s/2$ for the following converter implementation (from Homework 2).

C_p	R_p	L_p	L_m	R_m	n^2L_s	$n^2 R_s$	$n^{-2}C_s$	V_g	nV _{out}	f_s	t_{arphi}^{\dagger}	п
30 nF	.2 Ω	10 µH	10 µH	.1 Ω	10 µH	.2 Ω	30 nF	20 V	20 V	200 kHz	$T_s/4$	4
[†] See Fig. 3 for waveform timing definitions												

Fig. 3: Input waveform timing definitions