ECE692

Small Signal Discrete Time Modeling of a DAB Converter

In this problem, you will investigate the control-to-output transfer function of the 200-to-12V, 120 W dual active bridge converter.

Fig. 1: DAB converter schematic and waveform timing.

Table I: Converter design specification								
r _{on,p}	$r_{on,s}$	f_s	R_L	L	n_p	V_g	I_{load}	C_{out}
1 Ω	$5 \text{ m}\Omega$	500 kHz	0.4 Ω	20 µH	17	200 V	10 A	20 µF

Derive the control-to-output transfer function $G_{v\varphi}(z)$ from $\varphi = t_{\varphi} \cdot (2\pi/T_s)$ to V_{out} . An ADC samples the output voltage; in order to accommodate ADC conversion time, the ADC samples the output voltage $t_r = 500$ ns before the rising edge of $v_p(t)$.

- a) Find the steady-state phase shift φ which results in 120 W output power with $V_{out} = 12$ V.
- b) Assuming the ADC samples at rate $f_r = f_s$, derive an expression for $G_{\nu\varphi}(z)$, and generate a bode plot of the transfer function
- c) Assuming the ADC samples at rate $f_r = 2 \cdot f_s$, with each sample occurring $t_r = 500$ ns prior to the primary-side switching action, derive an expression for $G_{\nu\varphi}(z)$, and generate a bode plot of the transfer function. Comment on any differences between the results of parts (b) and (c)
- d) Repeat (c) for $t_r = 250$ ns and 0 ns. Plot all three bode plots on a single axis. Comment on any differences.
- e) Using the same approach, derive an expression and generate a bode plot for the output impedance $Z_{out}(z) = -\hat{V}_{out}(z)/\hat{I}_{out}(z)$. Logically, we expect the high-frequency output impedance of this converter to be dominated by the output capacitance. Comment on the characteristics of the bode plot.

Note: in all subparts, you may use the default MATLAB mapping built into the bode () function to convert between discrete and continuous systems. z = tf('z', Ts) will create a variable z which is the z-transform variable, with sampling time Ts. Then, bode(z) will produce a bode plot of G(z) = z with the built in (exponential) mapping.