ECE692

Small Signal Discrete Time Modeling of a DCM Buck Converter

In this problem, you will investigate the control-to-output transfer function of a 12-to-3 V Buck converter shown in Fig. 1

Fig. 1: Buck Converter

Table I: Converter design specification

	<u> </u>					
$r_{on,Q}$	r _{on,D}	f_s	L	V_g	Iload	C_{out}
10 mΩ	10 mΩ	500 kHz	1 µH	12 V	1 A	10 µF

When conducting, the diode and MOSFET can be modeled as on-resistances of value $r_{on,D}$ and $r_{on,Q}$, respectively. When not conducting, both can be modeled as ideal open-circuits.

Derive the control-to-output transfer function $G_{vd}(z)$ from d(t) to V_{out} . An ADC samples the output voltage at the instant the MOSFET turns on, with zero conversion delay.

- a) Find the steady-state duty cycles D and D_2 of the converter such that the output voltage is $V_{out} = 3$ V and diode conduction is correctly modeled, where D is the duty cycle of MOSFET conduction and D_2 is the duty cycle of diode conduction.
- b) Derive the traditional averaged model of the control-to-output transfer function $G_{vd,avg}(s)$.
- c) Derive a generalized state space model of the system of the form

$$x[k+1] = f(x[k], u[k], D[k], w[k])$$

$$0 = \sigma(x[k], u[k], D[k], w[k])$$

Give full realizations of both equations, and state explicitly what auxiliary variable(s) are included in w[k]

- d) Solve the system in (c) to obtain a complete discrete time small-signal model of the DCM buck converter. Give expressions for each matrix/vector in terms of the state space models of the converter.
- e) On the same axes, produce a bode plot of the averaged model $G_{vd,avg}(s)$ and your discrete time model $G_{vd}(z)$, using the built-in discrete time conversion in the bode () function. Comment on any differences.