
Propagation of Pulses on Transmission Lines

So far we have been talking about single-frequency (harmonic) “signals”, which carry 
no information. 
To transmit information, we must modulate the signal.

For example, we modulate a microwave carrier to send a 
bit down the line. 

This envelope travels along the line at speed 𝑣𝑣𝑔𝑔, the 
“group velocity,” which is usually a little different 
from 𝑣𝑣𝑝𝑝, due to dispersion. 
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For simplicity, we ignore dispersion and assume 𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑝𝑝. 

If ZL = Z0, this pulse is totally absorbed upon arrival at the load.  
This is what we want.

For a lossless line, Z0 is real.
If ZL is purely resistive, this match is (assumed to be) frequency-independent. 
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We first look at the case, 𝜏𝜏 < ⁄𝑙𝑙 𝑣𝑣𝑝𝑝: 

If ZL ≠ Z0 ≠ Zg, things become complicated.
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First case, 𝜏𝜏 < ⁄𝑙𝑙 𝑣𝑣𝑝𝑝: 

ZL ≠ Z0 ≠ Zg
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τ

Lots of echoes. Echoes die off. 
May corrupt other bits
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Second case, 𝜏𝜏 > ⁄𝑙𝑙 𝑣𝑣𝑝𝑝:

The bit is distorted and 
broadened.



zL = 0.5 − j

yL = 0.4 + 0.8j

d = 0.063λ

l

y(d) = 1 + 1.58j

l = 0.09λ

Single stub matching example

Recall that we always have multiple 
reflections inside any matching network.
Does impedance matching really help us?
Why?
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Single stub matching example

Recall that we always have multiple 
reflections inside any matching network.
Does impedance matching really help us?
Why?

Notice that we can always choose to have
d < λ/2 and l < λ/2.
The time to travel λ/2 is 1/(2f ).
Thus the bit is broadened only by several 
1/f , at most.
Without matching, we have echoes. 

The modulated case is quite complicated.  We now 
look into a simple case quantitatively.

Recall that we have two solutions for 
d < λ/2. We may want to choose the 
smaller d. 



yL = 0.4 + 0.8j

𝑦𝑦𝐿𝐿 ↔ −𝛤𝛤

𝑧𝑧𝐿𝐿 ↔ 𝛤𝛤

𝑧𝑧 𝑑𝑑 ↔ 𝛤𝛤𝑑𝑑

𝑦𝑦 𝑑𝑑 ↔ −𝛤𝛤𝑑𝑑

zL = 0.5 − j

On this circle, 
y = 1 + jb, i.e., 
Y = Y0 + jB

d = 0.178λ − 0.115λ
= 0.063λ

y(d) = 1 + 1.58j

g = 1

When y(d) is on g = 1 circle of the 
y-chart, z(d) is on g = 1 circle of the 
z-chart, i.e. the r = 1 circle of the y-chart.

When working with y(d), 
keep in mind that 
𝑦𝑦 𝑑𝑑 ↔ −𝛤𝛤𝑑𝑑.
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First, let’s list the basic assumptions to be used:

1. Lossless line. Z0 is purely real.
2. Purely resistive load ZL = RL. 
3. Therefore,  Γ is frequency-independent. 

(If RL = Z0, impedance matched for all frequencies)
4. Dispersionless: 𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑝𝑝 for all frequencies.

Know the simplifying assumptions. Know the limitations.



Rg RLVg

Rg ≠ Z0 ≠ RLt = 0

z = 0 z = l
Notice change in convention.  Generator at z = 0, load at z = l.

Propagation of a voltage step on a transmission line

For 0 < t < T = l/𝑣𝑣𝑝𝑝, 

Time of a single trip

The “turn-on” event has not 
reached the load yet. It does 
not know about RL.
The transmission line feels like 
infinitely long. In other words, 
no reflection yet.

What is the equivalent input 
impedance seen by the incident 
voltage step at z = 0?

?



Rg RLVg

Rg ≠ Z0 ≠ RLt = 0

z = 0 z = l

Propagation of a voltage step on a transmission line

For 0 < t < T = l/𝑣𝑣𝑝𝑝, 

Time of a single trip

The “turn-on” event has 
not reached the load yet. It 
does not know about RL.
The transmission line feels 
like infinitely long. In 
other words, no reflection 
yet.  

The equivalent input impedance 
seen by the incident voltage step
at z = 0 is Z0.

Not Zin!

Substript “1” means the first round trip.
Superscript “+” means the incident 
direction.  



Rg RLVg

Rg ≠ Z0 ≠ RLt = 0

z = 0 z = l

Propagation of a voltage step on a transmission line

i(z, T/2) 

Edge/front moving at vp (actually vg)

Snapshots at t = T/2  

The leading edge reaches the load at t = T.  Reflection.

What is the voltage at the load at t = T ?

The equivalent input impedance 
seen by the incident pulse at z = 0
is Z0.

Not Zin!



Snapshots at t = 3T/2  

What is the voltage at the load at t = T ?

Assuming

At t = 2T, the front hits the source.  Reflection.  

What is the voltage at the load at t = 2T ?
We paused here on Tue 10/11/2022.



Snapshots at t = 3T/2  Snapshots at t = 5T/2  

What is the voltage at the load at t = T ?

At t = 2T, the front hits the source.  Reflection.  

Assuming

What is the voltage at the load at t = 2T ?



At t = 3T, the front hits the load again.  

Again, notice the sign.

Again, notice that reflection happens instantaneously.

It goes on and on. For the ith round trip,  

Note: At the steady state, 𝑣𝑣 is the same at all z, therefore we do not specify z.
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Use with

We get:
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Surprising?

Similarly,

We have traced 𝑣𝑣(t) and i(t) all the way to t = ∞. 
That’s quite tedious. 
We have a graphical tool to trace this bouncing 
back and forth.
It’s called the bounce diagram.

Review textbook Section 2-12 overview, Section 2-12.1

We went through this slide set and moved on to the next one on Thu 10/13/2022.
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