
Electrostatics
Now we have finished our discussion on transmission line theory.

The transmission line theory 
deals with a special type of 
waveguides, where there are two 
conductors.
As such, you can define local
voltages 𝑣𝑣(z,t) and local currents 
i(z,t).  Such a distributive circuit 
theory is one step beyond the 
lumped element circuit theory.

But, there are other types of waveguides.
In general, you do not need two conductors to guide an EM wave. 
A metal tube is a wave guide. 
Here, you cannot define local voltages or currents. A “real” EM field 
theory is needed.
You may imagine a very coarse ray optics picture: metal walls are 
like mirrors. But this is not accurate. Ray optics breaks down when 
waveguide dimensions are comparable to the wavelength.



Besides waveguides, there are antennas and other things, where simple theories like 
lumped circuit theory and ray optics do not work.
We have to resort to the “real” EM field theory. 
Electrostatics is the simplest field theory, about static electric fields.
Keep in mind that nothing is “static”.

Keep in mind that fields are vectors. 
One reason the transmission line theory is simpler is that voltages and currents are 
scalars.
To handle vectors, you need vector algebra and vector calculus. 
Chapter 3 of the textbook is about the math needed.
Read on your own.  Individualized effort. 
Homework 8 is about Chapter 3.



Coulomb's Law
First, let’s review Coulomb’s law in free space (vacuum).

How do you express the force F on the probe charge Q
exerted by charge q, if the position of Q relative to q is 
represented by position vector R?



Coulomb's Law
First, let’s review Coulomb’s law in free space (vacuum).

How do you express the force F on the probe charge Q
exerted by charge q, if the position of Q relative to q is 
represented by position vector R?

Pay attention to notations: vectors, scalars.

Take home messages:
• F is a vector. Its direction is the same as R.
• Its magnitude is proportional to R2. 
• Like charges repel each other. Opposite charges attract each other.
• Here we focus on free space (i.e. vacuum), where permittivity = ε0. 

View that as just a proportional constant.  Dielectrics will be 
discussed later.

Define the unit vector:

A different way to write this is: 



Printed

Vectors: bold; italic or not
Scalars: not bold; italic
Numbers: not bold; not italic



What if our probe charge is Q’ at position R’?

So, we can imagine something called the electric field

When you put probe charge Q into the the electric field E of charge q, 
the field exerts a force F on Q:



Printed

Vectors: bold; italic or not
Scalars: not bold; italic
Numbers: not bold; not italic



Long ago, people did not know whether the electric field is real or just a mathematical 
construct.  Now we know it is real.

If you cover q with a metal lid, Q will feel the 
disappearance of the force after t = d/c, where c is 
speed of light. 
In other words, the interaction cannot be instantaneous 
over distance.
The field is the medium of the interaction.

Again, we emphasize that many quantities we deal with are vectors. 
For vector quantities, keep in mind this very simple example:
You first walk 4 miles to the north, and then make a turn to the east 
and walk 3 miles.  You are 5 miles away from where you started.
In the mathematical language, the sum of the two displacements is 5 
miles (in the direction shown).
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Example 1.1
Two point charges, each with a positive value +Q, are 2d apart.  Find the total field at a 
point at distance d from the midpoint of the line segment connecting them.  Find the 
force F on a point charge q, assumed to be positive.

Note:  Here we use scalars since we know the directions of these vectors, which are 
shown in the figure. 

Example 1.2

Repeat the above for two point charges +Q and –Q, 
assuming Q is positive. 

Total electric field of point charges



Example 1.0: the general case

We use this generic example to get familiar with the notations.
Charges q1 and q2 are at positions R1 and R2 . Find the 
total electric field a position R.
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Example 1.0: the general case

We use this generic example to get familiar with the notations.
Charges q1 and q2 are at positions R1 and R2 . Find the 
total electric field a position R.

where and
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Example 1.0: the general case

We use this generic example to get familiar with the notations.
Charges q1 and q2 are at positions R1 and R2 . Find the 
total electric field a position R.

where and

If we use a different set of coordinates x’, y’, and z’, 

and

The expression for E does not change. In other words, the expression is independent of 
the choice of coordinate system.
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Electric field of a continuous distribution of charge

The charge density ρ (or ρV in textbook) is a function of 
position.
The charge in a small volume dV around position R’ is ρdV.
The field at position R due to the charge ρdV at R’ is

The total field is

Of course, the total charge is

Notice that the integrant is a vector. (There will be a concrete example.)



The charge could be confined in a surface (e.g. the surface of a conductor).
In this case we define the areal charge density ρS (or σ in some books) as a 
function of position. What’s the unit of ρS?
The charge in a small area dS around position R’ is ρS dS.

The field at position R is

And, the total charge is

The charge could be confined along a line (not necessarily straight).
In this case we define the line charge density ρl as a function of position.  Unit of ρl?
The charge in a small segment dl around position R’ is ρl dl.

The field at position R is

And, the total charge is

Finish Problems 1 through 4 of Homework 7.



The above equations are general, therefore abstract.
To get more insight, let’s look at some examples.

Example 2: Uniformly charged ring

We have a ring of charge, with a uniform line charge density ρl and radius b. 
So, the total charge is

Let’s find the field at any arbitrary point along the z axis.
For each small segment bdφ of the ring, the field

Due to symmetry, we only need to sum up dEz of all segments.
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Compare this method with the one used in the textbook.
This is much simpler and faster.
Why?  We made use of symmetry.
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Now, let’s do a sanity check.

Same as a point charge.
Passed!

Now, we can use the above result to find the field along the axis of a charged disk.
Uniform areal charge density ρS, radius a. 
The charge of each ring of radius r and width dr is

Using the above result with dQ Q and dE E, we have 
the field due to such a ring: a



The field due to such a ring:

Now, sum up all the rings:

This integral is a bit of math exercise:

r2 x, 

Recall that .  With n = −3/2,

a



Using , we have

(r2 x, z2 x0)
Therefore

for 



Therefore

Now, sanity check for and

Obviously, .  But this is not too useful.  We want to see the trend.

Same as a point charge. Passed!

You see, what’s important is the ratio z/a. Everything is relative.  

a



Along z axis,

Anything wrong?  Donut vs pie?

Again, what’s important is the ratio z/a. Everything is relative.  

Charge density

This is the field of an infinitely large sheet of charge.
From another point of view, this is the field at the center of a finite sheet: 
The donut is different from the pie no matter how small the hole is!
We will get back to these points after we talk about Gauss’s law.

0

0 0

See next page about this

a



Now, you can use the “charge pie” result to calculate the field of a charged cylinder along 
its axis.  How? 

Reminder: Finish Problems 1 through 4 of Homework 7.  Read Sections 4-1, 4-2.1, & 4-3 
of textbook.  Continue working on Chapter 3 (vector analysis).

Consider a “donut” of outer radius a and inner (hole) radius b. 
Take the integral from b to a instead of 0 to a.

b

Another way: The field due to the “pie” of radius a minus that due to a pie of radius b. 

Either way, you’ll see, for the “donut” with a hole radius b, E = 0 at the center at z = 0, 
as long as the hole is there, no matter how small b is!

Do it on your own: Write the expression for the field at z along the axis for such a pie.

We finished this slide set on Tue 10/18/2022.
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