
Gauss’s Law
The beauty of 1/R2
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This is why we 
put a factor 4π in 
Coulomb’s law.

For sphere,

Since R ⊥ ds, ˆ d⋅ sR = ds. 
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Remember the electric field stream lines? 

Arrows signify directions, density of lines the strength.

The spheres centered at the point charge are Gaussian surfaces. 
A constant flux through all these closed surfaces.



Gauss’s Law
The beauty of 1/R2
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For a single point charge:
The density of field lines signifies field strength, ∝ 1/R2. 
Surface area ∝ 1/R2. 
Constant flux of field lines through spheres, regardless of R.

The Gaussian surfaces do not have to be spheres.  Constant flux through any closed surface.
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Since R ⊥ ds, ˆ d⋅ sR = ds. 

“From our derivation you see that Gauss' law follows from the fact that the exponent 
in Coulomb's law is exactly two.  A 1/r3 field, or any 1/rn field with n ≠ 2, would not 
give Gauss' law. So Gauss' law is just an expression, in a different form, of the 
Coulomb law...”   -- Richard Feynman

This is why we 
put a factor 4π in 
Coulomb’s law.

For sphere,
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For multiple point charges:
The flux of field stream lines is proportional to the net charge 
enclosed by a Gaussian surface, due to superposition.

For a continuous chunk of charge,

00 εε
ρ QdVd ==⋅ ∫∫ sE

This is the integral form of Gauss’s law.
We may call it the “big picture” of Gauss’s law.

Next, we look at the differential form of Gauss’s law.
We may call that the “small picture” of the law.

A field line comes out of a positive charge, 
and go into a negative charge.



The differential form (or “small picture”) of Gauss’s law
To understand the physics (Gauss’s law), we first talk about the math (Gauss’s theorem).

F1 F2

Flux out of the cube through the left face

Flux out of the cube through the right face

The net flux of these two faces:

Considering the other two pairs of faces, the net flux out of the cube:

defined as the divergence of E , indicating how much flux 
comes out of a small volume ∆V around a point

Notice that the divergence is a scalar.

(Flux out of a closed surface is defined as positive)



defined as the divergence of E , indicating how much flux 
comes out of a small volume ∆V around a point

Define vector operator

thus

This is just notation.

For a small volume ∆V ∆S is the closed surface enclosing 
∆V of any arbitrary shape.  
∆V could be a small cube and ∆S
then includes its 6 faces.

Up to here, just math.  "Gauss's theorem."
The E here does not have to be an electric 
field.



Gauss's theorem in math.
It relates the integral form (“big picture”) 
and the differential form (“small picture”) 
of Gauss’s law in physics.

Equivalently, holds for any arbitrary S
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Gauss's theorem in math.
It relates the integral form (“big picture”) 
and the differential form (“small picture”) 
of Gauss’s law in physics.

Equivalently,

Here the physics (Gauss’s law) kicks in.
(by recalling that )

, thus

Differential form (“small picture”) of 
Gauss’s law: 
The divergence of electric field at each 
point is proportional to the local charge 
density.

Integral form (“big picture”) of 
Gauss’s law: 
The flux of electric field out of a 
closed surface is proportional to 
the charge it encloses.

holds for any arbitrary S

for any point in space.

for any arbitrary closed surface S enclosing volume V.



, thus

Differential form (“small picture”) of 
Gauss’s law: 
The divergence of electric field at each 
point is proportional to the local charge 
density.

Integral form (“big picture”) of 
Gauss’s law: 
The flux of electric field out of a 
closed surface is proportional to 
the charge it encloses.

The above is Gauss’s law in free space (vacuum).
For a dielectric, just replace ε0 with ε = εrε0, for now.
We will talk about what the dielectric constant εr really means.
Before that, let's look at some examples in free space (vacuum).

Finish Homework 7.  Read Section 4-4 and 3-5 of textbook.
Continue working on Chapter 3. 

for any point in space.

for any arbitrary closed surface S enclosing volume V.



Example 1: find the field of an infinitely large charge plane

Find the electric field due to an infinitely large sheet of charge with 
an areal charge density ρS. It is a 2D sheet, with a zero thickness.

By symmetry, the E fields on the two sides of the sheet 
must be equal & opposite, and must be perpendicular to 
the sheet. 
Imagine a cylinder (pie) with area A and zero height 
(thickness).
If the cylinder is at the sheet,

Treat E as a scalar, since we 
already know the direction. 

Recall our result for the charged disk:

Actually,

If the cylinder is elsewhere, the net flux is 0: 
What goes in comes out; no charge inside the cylinder.

If the cylinder is elsewhere, 
the net flux is 0



https://www.quora.com/Why-can-not-we-evaluate-electric-field-due-to-
a-uniformly-charged-disc-at-any-point-on-its-axis-using-the-Gausss-law

0

The field of a uniformly charged finite disk
Recall that we “did not pass the sanity test” for E(z  0) along z axis:

0 0

Then we said what’s important is the ratio z/a. 
Everything is relative.  

This is the field of an infinitely large sheet of charge.

From another point of view, this is the field at the 
center of a finite sheet. The donut is different from 
the pie no matter how small the hole is!
Visualize the field of the donut.

a



Example 2: field of two infinitely large sheets with equal and opposite charge densities

What if there are two infinitely large sheets, one charged with a surface 
density +ρS, and the other −ρS.  Assume ρS. is positive for convenience.

Is this a familiar picture?
What circuit element is this picture a model of?

…
+

−

+

−

+

−

+

−

…
+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+ρS

−ρS



Example 2: field of two infinitely large sheets with equal and opposite charge densities

What if there are two infinitely large sheets, one charged with a surface 
density +ρS, and the other −ρS.  Assume ρS. is positive for convenience.

This a infinitely large parallel-plate capacitor.
It is the simplest model of the capacitor, ignoring the fringe effect. 

by assuming infinite lateral size
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Another look at the parallel-plate capacitor 
(Two infinitely large sheets of opposite charges)
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… … The electric field lines starts from a positive 
charge and ends at a negative charge.

Gauss’s law leads to

You may use a negative sign to signify the “downward” direction.

Sign conventions are kind of arbitrary. We just need to be self-consistent within the context.

An example for you to work out on your own:

Two charged slabs, one with a volume charge density +ρ, 
the other −ρ, where ρ > 0. Each slab has a thickness d
and infinite area.
Find the electric field distribution.
You may define the direction perpendicular to the slabs x, 
and set x = 0 for the interface between them.

So far we have limited our discussions to free space.
Now, let’s talk about dielectrics (insulators).



Electric Fields in Insulators (Dielectrics)
Polarization (defined to account for internal charges of media/materials)

1. Electronic polarization

d

p = qdDipole
pointing from − to +

When E = 0, p = 0.

2. Ionic polarization

When E = 0, net dipole is 0.

3. Orientational polarization

Again, no net dipole when E = 0. 

V
i

i

V ∆
=

∑
→∆

p
P

0
lim

Define polarization

For all three cases, when E = 0, 
net dipole is 0, therefore P = 0. 
A finite E will induce a net 
polarization P.

(net dipole per volume; 
notice vector summation)

H2O as example



Next, we use a simple model based on the parallel-plate capacitor to illustrate the 
behavior of a dielectric in the presence of an applied external electric  field. 
Big picture first, followed by details.

(external, applied)Eext
(external, applied)Eext

(external, applied)

EP

(total field)
Eext

Capacitor with vacuum between plates Capacitor with dielectric between plates

The big picture: 
• External field induces polarization (net dipoles). 
• Induced polarization is equivalent to a surface charge, 
• which gives rise to an internal electric field.
• The internal field is against the external field. 
• The net (total) field is what we care about. 
• The net, external, and internal fields each follows 

Gauss’s law with regard to the net, external, and 
internal charges. 



Let’s digress back to the parallel-plate capacitor with free space between plates, for the 
manifestation of Gauss’s law at a surface. +
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… …Recall that the field of a parallel-plate capacitor is 
the consequence of Gauss’s law applied to the 
surface charge densities:

or, in the differential form (the “small picture”),

Volume density

Surface density

for the plate surfaces

General forms of Gauss’s law Manifestation at a surface

Let’s define the “electric displacement” D = ε0E. Then,

ρ=⋅∇ D D = |D| = ρs



Let’s digress back to the parallel-plate capacitor with free space between plates, for the 
manifestation of Gauss’s law at a surface. +
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… …Recall that the field of a parallel-plate capacitor is 
the consequence of Gauss’s law applied to the 
surface charge densities:

or, in the differential form (the “small picture”),

Volume density

Surface density

for the plate surfaces

General forms of Gauss’s law Manifestation at a surface
ρ=⋅∇ D

D = |D| = ρs



Let’s digress back to the parallel-plate capacitor with free space between plates, for the 
manifestation of Gauss’s law at a surface. +

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

… …Recall that the field of a parallel-plate capacitor is 
the consequence of Gauss’s law applied to the 
surface charge densities:

or, in the differential form (the “small picture”),
Volume density

Surface density
for the plate surfaces

General forms of Gauss’s law Manifestation at a surface
ρ=⋅∇ D

D = |D| = ρs

At a perfect conductor surface, we can write D = |D| = ρs as: ρs = D⋅n̂
Surface normal 
pointing out (i.e. 
into the free space 
or vacuum); check 
signs for both plate 
surfaces

For the perfect conductor plate, D = ρs, as a result of  ρ=⋅∇ D



No net charge

d

No net charge in the interior.  
Two sheet charges at surfaces by 
definition of polarization P:

(|ρsP|A)d = P(Ad) |ρsP| = P

The polarization charge density, or “internal” charge density.

Consider a dielectric slab of infinite lateral size (cross section shown in figure).

Assume an electric field E (total field!) is present.

Regardless of the mechanism (electronic, ionic, orientational), E induces P by 
polarizing the dielectric.

as opposed to external; not interior

thickness

What’s the unit of polarization charge density ρsP? 

What’s the unit of polarization P? 

n̂ n̂
We paused here on Thu 10/20/2022.



No net charge

d

No net charge in the interior.  
Two sheet charges at surfaces by 
definition of polarization P:

(|ρsP|A)d = P(Ad) |ρsP| = P

The polarization charge density, or “internal” charge density.

As any P is from − to + (whereas any D is from + to −), we write:   

ρsP = −P

Consider a dielectric slab of infinite lateral size (cross section shown in figure).

Assume an electric field E (total field!) is present.

Regardless of the mechanism (electronic, ionic, orientational), E induces P by 
polarizing the dielectric.

as opposed to external; not interior

thickness

What’s the unit of polarization charge density ρsP? 

Or, more generally, ρsP = −P⋅n̂

Local surface normal pointing into the dielectric; 
surface does not have to be planar

What’s the unit of polarization P? 

n̂ n̂

General formManifestation at a surface
P⋅−∇=Pρ

We paused here on Thu 10/20/2022.



Eext (external, applied)

EP

(total field)
By Gauss’s law, this polarization (or “internal”) charge 
leads to a polarization (or “internal”) field

ε0EP = ρsP = − PEP = ρsP/ε0 EP = −P/ε0

More generally, in the vector form: ε0EP = −P

Pay attention to the sign.

Now we apply Gauss’s law to the polarization charge

Pay attention to directions.

Regardless of the mechanism (electronic, ionic, orientational), E induces P.

No spontaneous polarization and not too strong E, P ∝ E.

P = χε0E (Will explain why later)

Now we relate the polarization to the total (net) field



(external, applied)Eext Again, consider a parallel capacitor with vacuum/air  
between the two plates.

External surface charge density ρs induces external field
Eext = ρs/ε0.

More generally, ρs = ε0 Eext⋅n̂

Surface normal pointing into the vacuum between plates; 
check signs for both plate surfaces

Now we apply Gauss’s law to the external charge



(external, applied)Eext Again, consider a parallel capacitor with vacuum/air  
between the two plates.

External surface charge density ρs induces external field
Eext = ρs/ε0.

More generally, ρs = ε0 Eext⋅n̂

Surface normal pointing into the vacuum between plates; 
check signs for both plate surfaces

Now we apply Gauss’s law to the external charge

General form

Manifestation at a surface



(external, applied)Eext Again, consider a parallel capacitor with vacuum/air  
between the two plates.

External surface charge density ρs induces external field
Eext = ρs/ε0.

More generally, ρs = ε0 Eext⋅n̂

Surface normal pointing into the vacuum between plates; 
check signs for both plate surfaces

Now we apply Gauss’s law to the external charge

(external, applied)

EP

(total field)
Eext

Now, keep the capacitor isolated (so that ρs cannot change), and 
push a slab of dielectric into the space between the two plates.

Recall that the polarization (or internal) field is
EP = ρsP/ε0 = −P/ε0.

The total field, also following Gauss’s law, is
E = Eext + EP = ρs/ε0 − P/ε0 = ρs/ε0 + ρsP/ε0

More generally, ρsP = −P⋅n̂

(More conveniently seen for the left side, where ρs > 0 and ρsP < 0. 
But check this out for both sides/plates)

E⋅n = Eext⋅n + EP⋅n = ρs/ε0 − P⋅n /ε0 = ρs/ε0 + ρsP/ε0
^ ^ ^ ^More generally,

(also by Gauss’s law)

General form

Manifestation at a surface

P⋅−∇=Pρ

ext



(external, applied)

EP

(total field)
Eext

Recall that P = χε0E

E = ρs/ε0 − P/ε0 = ρs/ε0 − χE

Notice this is the total field

(1+χ)E = ρs/ε0

Define εr = 1+χ, then εrE = ρs/ε0

εrε0E = ρs

Define ε = ε0εr = ε0(1+χ), then εE = ρs

The total field E = Eext + EP = ρs/ε0 − P/ε0 = ρs/ε0 + ρsP/ε0

E⋅n = Eext⋅n + EP⋅n = ρs/ε0 − P⋅n /ε0 = ρs/ε0 + ρsP/ε0
^ ^ ^ ^

The total (net) field and the total charge follow Gauss’s law 

More generally,

(general form)

(manifestation at a surface)

E +==⋅∇
0

total
0

)(11 ρρ
ε

ρ
ε P

(1)

Write Eq. (1) again: E = ρs/ε0 − P/ε0



(external, applied)

EP

(total field)
Eext

Recall that P = χε0E

E = ρs/ε0 − P/ε0 = ρs/ε0 − χE

Notice this is the total field

(1+χ)E = ρs/ε0

Define εr = 1+χ, then εrE = ρs/ε0

εrε0E = ρs

Define ε = ε0εr = ε0(1+χ), then εE = ρs

E⋅n = ρs/ε0 − χE⋅n^ ^

(1+χ)E⋅n = ρs/ε0
^

εrε0E⋅n = ρs
^

εE⋅n = ρs
^

The total field E = Eext + EP = ρs/ε0 − P/ε0 = ρs/ε0 + ρsP/ε0

E⋅n = Eext⋅n + EP⋅n = ρs/ε0 − P⋅n /ε0 = ρs/ε0 + ρsP/ε0
^ ^ ^ ^

More generally,

The total (net) field and the total charge follow Gauss’s law 

More generally,

(general form)

(manifestation at a surface)

E +==⋅∇
0

total
0

)(11 ρρ
ε

ρ
ε P

(1)

Write Eq. (1) again: E = ρs/ε0 − P/ε0

manifestation 
at a surface

general form
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(external, applied)

EP

(total field)
Eext

P = χε0E
For this simple geometry, we have shown:

(1+χ)E = ρs/ε0

Define εr = 1+χ, and we have: 
εrE = ρs/ε0 εrε0E = ρs

Define ε = ε0εr = ε0(1+χ), and we have: εE = ρs

We lump the polarization effect of a dielectric into a parameter ε and 
replace ε0 (for free space) with ε (for the dielectric) in equations,
which otherwise remain the same.

We often write χ as χe, thus re εεχεε 00 )1( ≡+≡

The field distribution of an infinitely large parallel-plate capacitor with a 
vacuum gap is the manifestation of Gauss’s law. 
The above relations for the capacitor filled with a dielectric result from 
Gauss’s law and the properties of the dielectric. 
Generalization of these relations leads to Gauss’s law in dielectrics. 

εE⋅n = ρs
^

Surface normal pointing into the dielectric; 
check signs for both plate surfaces

ε0E⋅n = ρs
^

εE⋅n = ρs
^

A Quick Summary

Notice that E is the total field.

More generally,



Recall that the field of a parallel-
plate capacitor is the consequence
of Gauss’s law applied to the 
surface charge densities:

Not net charge

d

On both surfaces of a dielectric slab

P⋅−∇=Pρ

Notice the sign

Gauss’s law in dielectricsGauss’s law in free space

ρ=⋅∇ D

ε0E⋅n = ρs
^

D⋅n = ρs
^ ρsP = −P⋅n̂

ρsP = −P⋅n̂

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
++

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

Polarization (internal) 
surface charge density

Polarization (internal) 
volume charge density

Free (external) 
surface charge density

Free (external) 
volume charge density



Not net charge

d

On both surfaces of a dielectric slab

P⋅−∇=Pρ

Notice the sign

Gauss’s law in dielectrics

Generalize to other geometries

EP 0εχe=
ρε =⋅∇+⋅∇ PE0

E +==⋅∇
0

total
0

)(11 ρρ
ε

ρ
ε P

E =⋅∇ P⋅∇−
00

1
εε

ρ

ρεχε =⋅∇≡+⋅∇ DE)( 00 e ,
where re εεχεε 00 )1( ≡+≡ ,

EED εεε ≡≡ r0

ρsP = −P⋅n̂

ρsP = −P⋅n̂

P⋅−∇=Pρ

Polarization (internal) 
surface charge density

Polarization (internal) 
volume charge density

Free (external) 
volume charge density

(treat external and polarization 
charges equally)

(lump polarization effect 
into ε, consider external 
charge only)



We lump the polarization effect of a dielectric material into a parameter ε,
and substitute ε0 (for free space) with ε (for the dielectric) in equations.

Highlights

Take-home message:

Limitations of our discussion:
• No spontaneous polarization or piezoelectric polarization: 

whenever E = 0, P = 0 
• Linearity: P = χε0E, D = εE
• Isotropy: The proportional constants are the same in all directions, 

thus P//E, D//E

ρεχε =⋅∇≡+⋅∇ DE)( 00 e ,
where re εεχεε 00 )1( ≡+≡ ,

EED εεε ≡≡ r0

(external, applied)

EP

(total field)
Eext

The polarization charge ρsP (or ρP in general) works 
against the external charge ρs (or ρ in general). 
The polarization field EP is always against the externa 
field Eext. Therefore the name dielectric.
εr = 1+χ > 1, meaning larger D, therefore more charge, 
i.e. larger ρ needed to get to the same total filed E.

ε > ε0



We consider a dielectric slab of infinite lateral size.

Regardless of the mechanism (electronic, ionic, orientational), E induces P.

For materials without spontaneous polarization and for not too strong E, P ∝ E.

P = χε0E

Side notes:
Spontaneous polarization: Some materials exhibit finite P even when E = 0, due to low symmetry of 
their structures.  Although not covered in this course, this phenomenon (pyroelectricity) is important.   
GaN and related semiconductors (AlGaN, InGaN) are such materials.  If the spontaneous polarization 
can be switched by an external electric field, such a material is ferroelectric.
Related to this, we can mechanically strain some material to break/lower its symmetry thus induce 
finite P at E = 0.  This is called piezoelectricity.
Spontaneous and piezoelectric polarizations are exploited in GaN-based power electronics devices (to 
obtain carriers without doping the semiconductors).

+−

E

P ∝ E:  For a dielectric without spontaneous polarization, each dipole can be 
modeled as the positive and negative charges connected by a Hookean spring, 
near their equilibrium positions. Electric force F ∝ E results in displacement d
from equilibrium for each dipole, thus p ∝ d and the total dipole moment per 
volume P ∝ d. At steady state, the Hookean force −Kd is balanced by the F, 
thus F = Kd.  Since F ∝ E, F ∝ d, and P ∝ d, we have P ∝ E.  



Example 3: E and D of a uniformly charged sphere

For a charged dielectric sphere with charge density ρ, 
dielectric constant εr (thus ε = ε0εr ), and radius R, find 
E(r) and D(r) for all r.

The system is spherically symmetric, therefore 
E(r) = E(r)r and D(r) = D(r)r.

For

For

Discontinuity 
unless ε = ε0

Why is E discontinuous and D continuous?Same as point charge

Read textbook Section 4-7 overview & Subsection 4-7.1. 



E and D of a uniformly charged sphere

A charged dielectric sphere with charge density ρ, 
dielectric constant εr (thus ε = ε0εr ), and radius R.

Why is E discontinuous and D continuous?

“external”

Discontinuity 
unless ε = ε0

The quick answer: 
There is polarization charge on the sphere surface, 
accounting for the extra field. 

👉👉

Consider an easier-to-visualize planar case. 
Can you plot the E field distribution?  

👉👉



The quick answer: 
There is polarization charge on the sphere surface, 
accounting for the extra field, 

👉👉
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𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3 .

𝜌𝜌𝑠𝑠𝑠𝑠 = −𝐏𝐏 � �𝐧𝐧 = 𝐏𝐏 � �𝐫𝐫 =
𝜀𝜀𝑟𝑟 − 1
𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3 .

∆𝐸𝐸 =
𝑅𝑅𝜌𝜌
3𝜀𝜀0

−
𝑅𝑅𝜌𝜌
3𝜀𝜀

=
𝑅𝑅𝜌𝜌
3𝜀𝜀0

1 −
1
𝜀𝜀𝑟𝑟

=
𝜀𝜀𝑟𝑟 − 1
𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3𝜀𝜀0

on the inner side of the sphere surface, 

Explanation:

or simply The surface density of polarization charge is

You are strongly encouraged to go through the Explanation and Summary offline.

Discontinuity 
unless ε = ε0

Obviously, ∆𝐸𝐸 =
𝜌𝜌𝑠𝑠𝑠𝑠
𝜀𝜀0



ρ=⋅∇ D

D is only about the external charge; ε or ε0 does not enter the equations. 

The field at the surface due to this surface density of polarization charge is 

𝐄𝐄P =
𝜌𝜌𝑠𝑠𝑠𝑠
𝜀𝜀0

�𝐫𝐫 =
𝜀𝜀𝑟𝑟 − 1
𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3𝜀𝜀0

�𝐫𝐫 or simply 𝐸𝐸P =
𝜀𝜀𝑟𝑟 − 1
𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3𝜀𝜀0

.

(By applying Gauss’s law to a patch of the sphere surface)

Comparing this to the discontinuity ∆𝐸𝐸 =
𝜀𝜀𝑟𝑟 − 1
𝜀𝜀𝑟𝑟

𝑅𝑅𝜌𝜌
3𝜀𝜀0

,

you see this field 𝐸𝐸P due to the polarization charge 
exactly accounts for the discontinuity.

Summary & important comments:

E is due to both the external charge and the internal (polarization) charge. 



Additional details

⊕

In our simple parallel-plate capacitor model, external charges are located on the plates, 
not in the interior of the dielectric. As a result, the polarization charges are only at the 
two surfaces of the dielectric. 
More generally, there is a relation between the external charge and the polarization 
charge. 

𝜌𝜌𝑠𝑠 = −𝛁𝛁 � 𝐏𝐏

𝐏𝐏 = 𝜒𝜒𝜀𝜀0𝐄𝐄
insert

𝜌𝜌𝑠𝑠 = −𝜒𝜒𝜀𝜀0𝛁𝛁 � 𝐄𝐄

𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌/𝜀𝜀
insert

𝜌𝜌𝑠𝑠 = −𝜒𝜒
𝜌𝜌
𝜀𝜀𝑟𝑟

= −
(𝜀𝜀𝑟𝑟 − 1)

𝜀𝜀𝑟𝑟
𝜌𝜌

Notice the negative sign:
Polarization charge against external charge

The uniformly charge sphere follows this relation.

For the parallel-plate capacitor, 𝜌𝜌 = 0 𝜌𝜌𝑠𝑠 = 0.

Similarly, a dielectric sphere with all “external” charge 
concentrated at the center, 👉👉

𝜌𝜌 = 0 𝜌𝜌𝑠𝑠 = 0

Exercise: 
Find E and D at arbitrary positions r (0 < 𝑟𝑟 < ∞) with regard to the center of a dielectric 
sphere where a point charge q is located. The dielectric constant is 𝜀𝜀𝑟𝑟 and the radius is R. 

for 0 < 𝑟𝑟 < 𝑅𝑅.



For simple geometry, consider a parallel-plate capacitor like this:

Imagine a tiny pie, with a zero thickness and an area ∆S, and with 
the bottom and top on opposite sides of the boundary.  

Recall Gauss’s law:
Subscript n means normal, for general case.
Not needed in this case.

At interface between two dielectrics with 

Does not include polarization charge

When external interface charge density ρs = 0, 
Dn is continuous.
En is discontinuous due to polarization charge 
at interface.



Similarly, at interface between a perfect conductor and a dielectric or vacuum 
(Medium 1 is the conductor)

+ + + +
++ +

At interface between two dielectrics with 
External charge

Subscript n means normal, for general case.

The interface need not be planar. 
For non-planar interface, let the zero-thickness pie’s area ∆S  0, 
and you’ll get the same conclusion.  

External charge

These are boundary conditions of the electrostatic field.



(external, applied)Eext
Summary on Dielectrics

vacuum

𝜌𝜌𝑆𝑆𝑠𝑠 = −𝐏𝐏 � �𝐧𝐧
Left: 𝜌𝜌𝑆𝑆𝑠𝑠 = −𝐏𝐏 � �𝐧𝐧 = − 𝜌𝜌𝑆𝑆𝑠𝑠 .
Right: 𝜌𝜌𝑆𝑆𝑠𝑠 = −𝐏𝐏 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆𝑠𝑠

+ 𝜌𝜌𝑆𝑆 − 𝜌𝜌𝑆𝑆

• Gauss’s law in free space

�𝐧𝐧
�𝐧𝐧

Parallel-plate capacitor model General

𝜀𝜀0𝛁𝛁 � 𝐄𝐄ext = 𝜌𝜌
external

𝜀𝜀0𝐄𝐄ext � �𝐧𝐧 = 𝜌𝜌𝑆𝑆
with �𝐧𝐧 defined as pointing to interior. 
See figure. Left: + 𝜌𝜌𝑆𝑆 thus 𝐄𝐄ext along �𝐧𝐧.
Right:  + 𝜌𝜌𝑆𝑆 thus 𝐄𝐄ext along �𝐧𝐧. 

external

(external, applied)Eext

𝐄𝐄𝐏𝐏

• Dielectric in presence of external field

V
i

i

V ∆
=

∑
→∆

p
P

0
lim Vector sum, net!

𝛁𝛁 � 𝐏𝐏 = −𝜌𝜌𝑠𝑠

Parallel-plate capacitor model General

�𝐧𝐧 �𝐧𝐧

+ 𝜌𝜌𝑆𝑆 − 𝜌𝜌𝑆𝑆𝜌𝜌𝑆𝑆𝑠𝑠− 𝜌𝜌𝑆𝑆𝑠𝑠

o Polarization charges give rise to internal field 𝐄𝐄𝐏𝐏
𝜀𝜀0𝛁𝛁 � 𝐄𝐄𝐏𝐏 = 𝜌𝜌𝑠𝑠𝐄𝐄𝐏𝐏 = ⁄𝜎𝜎𝑠𝑠�𝐧𝐧 𝜀𝜀0

= ⁄− 𝐏𝐏 � �𝐧𝐧 �𝐧𝐧 𝜀𝜀0 = ⁄−𝐏𝐏 𝜀𝜀0
for both left and right plates.

𝛁𝛁 � 𝐏𝐏 = −𝜌𝜌𝑠𝑠

⇒ 𝐄𝐄𝐏𝐏 = ⁄−𝐏𝐏 𝜀𝜀0



(external, applied)Eext

𝐄𝐄𝐏𝐏

�𝐧𝐧 �𝐧𝐧

+ 𝜌𝜌𝑆𝑆 − 𝜌𝜌𝑆𝑆𝜌𝜌𝑆𝑆𝑠𝑠− 𝜌𝜌𝑆𝑆𝑠𝑠

o Polarization P is a linear response to the total field 𝐄𝐄 = 𝐄𝐄ext + 𝐄𝐄𝐏𝐏, rather than just 𝐄𝐄ext.

Define the proportional constant as 𝜒𝜒𝑒𝑒𝜀𝜀0, i.e., 𝐏𝐏 = 𝜒𝜒𝑒𝑒𝜀𝜀0𝐄𝐄.

Parallel-plate capacitor model General

𝐄𝐄 = 𝐄𝐄ext + 𝐄𝐄𝐏𝐏
= ⁄𝜌𝜌𝑆𝑆�𝐧𝐧 𝜀𝜀0 ⁄−𝐏𝐏 𝜀𝜀0

𝜀𝜀0𝛁𝛁 � 𝐄𝐄
= 𝜀𝜀0𝛁𝛁 � 𝐄𝐄ext + 𝜀𝜀0𝛁𝛁 � 𝐄𝐄𝐏𝐏
= 𝜌𝜌 + 𝜌𝜌𝑠𝑠 = 𝜌𝜌 − 𝛁𝛁 � 𝐏𝐏

𝐏𝐏 = 𝜒𝜒𝑒𝑒𝜀𝜀0𝐄𝐄
𝐏𝐏 = 𝜒𝜒𝑒𝑒𝜀𝜀0𝐄𝐄

(This holds for both left and right plates)
𝜀𝜀0 1 + 𝜒𝜒𝑒𝑒 𝐄𝐄 = 𝜌𝜌𝑆𝑆�𝐧𝐧

⇒

𝛁𝛁 � 1 + 𝜒𝜒𝑒𝑒 𝜀𝜀0 𝐄𝐄 = 𝜌𝜌

⇒

Define 1 + 𝜒𝜒𝑒𝑒 = 𝜀𝜀𝑟𝑟 and 𝜀𝜀 = 𝜀𝜀𝑟𝑟𝜀𝜀0, then we have Gauss’s law 
considering external charge only:

𝜀𝜀𝐄𝐄 = 𝜌𝜌𝑆𝑆�𝐧𝐧 𝛁𝛁 � (𝜀𝜀𝐄𝐄) = 𝜌𝜌

Define 𝐃𝐃 = 𝜀𝜀𝐄𝐄 = 𝜀𝜀0𝐄𝐄 + 𝜒𝜒𝑒𝑒𝜀𝜀0𝐄𝐄 = 𝜀𝜀0𝐄𝐄 + 𝐏𝐏, then

𝐃𝐃 = 𝜌𝜌𝑆𝑆�𝐧𝐧
(This holds for both left and right plates)

𝛁𝛁 � 𝐃𝐃 = 𝜌𝜌

𝐃𝐃 = 𝜌𝜌𝑆𝑆�𝐧𝐧
or

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

We finished this slide set on Tue 11/1/2022. 
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