Potential

The electrostatic field Is conservative (just like gravity)

The (minimum) work done to move q from a to b:

 $W = -\int_{a}^{b} \mathbf{F} \cdot d\mathbf{l}$ $= -q \int_{a}^{b} \mathbf{E} \cdot d\mathbf{l}$

The meaning of the negative sign: An external force $-\mathbf{F}$ is exerted to overcome the electrostatic force \mathbf{F} . Here *W* is the work done by the external (non-electrostatic) force.

W is independent of the path. Therefore, $\oint \mathbf{E} \cdot d\mathbf{l} = 0$

But why is *W* independent of the path? Let's first consider the field of a point charge.

Because the field is radial, $\mathbf{E} = E(r)\hat{\mathbf{r}}$ (Coulomb's law) for a point charge.

By superposition, for any electrostatic field,

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0$$

Such a field is said to be conservative.

We should point out an important fact. For any radial force the work done is independent of the path, and there exists a potential. If you think about it, the entire argument we made above to show that the work integral was independent of the path depended only on the fact that the force from a single charge was radial and spherically symmetric. It did not depend on the fact that the dependence on distance was as $1/r^2$ —there could have been any *r* dependence.

--Richard Feynman

Similarly, the gravitational field is also conservative, due to the similarity between Newton's law of universal gravity and Coulomb's law.

Exceptions are found only in abstract art:

Waterfall by M.C. Escher

Side note: A non-conservative field does not violate the conservation of energy.

In the physical world, you need a pump, just as you need a battery (or the likes) for a circuit. Since the work to be done to move a charge qfrom a to b is independent of the path and proportional to q, we can define a quantity called potential, just like height in the gravitational field.

Potential at b

$$V_b - V_a = -\int \vec{E} \cdot d\vec{l} \iff dV = -\vec{E} \cdot d\vec{l}$$

-E is sort of the derivative of V in 3D space. In 1D, we have $dV = -Edl \Leftrightarrow E = -\frac{dV}{dl}$ Think about the infinitely large dl parallel plate capacitor.

This "vector derivative" is called the gradient.

The gradient of a scalar function, or, as we call it here, a scalar field V(x,y,z), is

The vector sum of the three derivatives in respective directions

Visualize the gradient in 2D

No change in altitude Direction of steepest ascent z=f(a,b) (a,b,f(a,b)) Direction of steepest descent х Y

http://moodle.capilanou.ca/mod/book/view.php?id=328667&chapterid=1401

The gradient is the steepest slope. In the direction perpendicular to the gradient, the slope is zero. The gradient of a scalar function, or as we call it here, a scalar field V(x,y,z), is

The vector sum of the three derivatives

Recall that we defined

Visualize the gradient in 2D

Thus we can write the gradient of V(x,y,z) as $\bigtriangledown \lor \lor$

Thus
$$dV = -\vec{E} \cdot d\vec{\ell} = \nabla V \cdot d\vec{\ell}$$

$$\nabla V = -\vec{E}$$

The electric field is the negative gradient of the potential.

Example: potential distribution due to a point charge

Take a reference $\sqrt{(\infty)} = \Im$

Recall that no work is done if we move a probe charge (not the charge q) sideways. So move it right towards q.

If in free space, $\mathcal{E} = \mathcal{E}_0$

Poisson's Equation

$$\nabla \cdot \vec{E} = \frac{P}{\varepsilon} \} \implies \nabla \cdot (\nabla V) = -\frac{P}{\varepsilon}$$

$$\vec{E} = -\nabla V$$

Recall that
$$\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{j} \frac{\partial}{\partial y}$$

 $\nabla V = \hat{x} \frac{\partial V}{\partial x} + \hat{j} \frac{\partial V}{\partial y} + \hat{j} \frac{\partial V}{\partial y}$

 $\nabla^2 V \equiv \nabla \cdot (\nabla V) = (\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{y} \frac{\partial}{\partial y} + \hat{y} \frac{\partial}{\partial y} + \hat{y} \frac{\partial V}{\partial y} + \hat{y} \frac{\partial V}{\partial y} + \hat{y} \frac{\partial V}{\partial y})$

$$= \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

Notice that this is a scalar

Poisson's Equation

$$\nabla \cdot \vec{E} = \frac{P}{\varepsilon} \} \implies \nabla \cdot (\nabla V) = -\frac{P}{\varepsilon}$$

$$\vec{E} = -\nabla V$$

 $\nabla^2 V \equiv \nabla \cdot (\nabla V) = (\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{y} \frac{\partial}{\partial y}) \cdot (\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{y} \frac{\partial}{\partial y})$

$$\therefore \sqrt{7^2}V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial g^2} = -\frac{\beta}{\epsilon}$$

Recall this problem.

One way to solve it is to use the 1D Poisson's Equation. Here, 1D means there is no variation in the other two dimensions – the slabs are assumed to be infinitely large in lateral dimensions.

Do Problems 1, 2 of Homework 9. Read Sections 4-5 and 3-4 of textbook. Continue working Chapter 3.

Current & Ohm's Law

Let's first consider the current w/o asking what drives it. (The kinematics of current) Closely read these notes and Section 4-2.2 for details.

Conductor w/ mobile charge density $\rho_{\rm V}$, or just ρ for short.

What are the mobile charge carriers in metals?

Usually the overall conductor is charge neutral.

Mobile charge carriers move at an average net velocity **u**.

Special case in Fig. (a):

$$\Delta I = \frac{\Delta q'}{\Delta t} = \rho u \Delta s'$$

$$J = \frac{\Delta I}{\Delta s'} = \rho u = -neu$$

Volume charge ρ_{v} $\Delta s'$ $\Delta q' = \rho_{v} u \Delta s' \Delta t$ (a) ρ_{v} Δs θ $\Delta s = \hat{\mathbf{n}} \Delta s$ θ $\Delta q = \rho_{v} \mathbf{u} \cdot \Delta s \Delta t$ $= \rho_{v} \mathbf{u} \Delta s \Delta t \cos \theta$

(b)

where n is the mobile electron density and e the electron charge.

General case in (b): $\Delta I = \frac{\Delta q}{\Delta t} = \rho \mathbf{u} \cdot \Delta \mathbf{s} = \mathbf{J} \cdot \Delta \mathbf{s}$ The unit of *J* is....? $\mathbf{J} = \rho \mathbf{u}$ $A/m^2 = (C/m^3)(m/s) = (C/s)/m^2$

$$J = \frac{\Delta I}{\Delta s'} = \rho u = -neu$$

More generally, $\mathbf{J} = \rho \mathbf{u}$

The unit of J is....

 $A/m^2 = (C/m^3)(m/s) = (C/s)/m^2$

For an arbitrary surface S (not necessarily planar),

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$

What about a closed surface?

$$\oint_{S} \mathbf{J} \cdot d\mathbf{s} = ???$$

 $\oint_{S} \mathbf{J} \cdot d\mathbf{s} = 0 \text{ for an arbitrary closed surface.}$ Kirchhoff's current law (KCL)!

Closely review these notes and textbook Section 4-2.2.

Recall that $\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$ for any arbitrary closed contour *C*.

What does this correspond to in circuit theory?

Kirchhoff's voltage law (KVL)

(Not exactly, if we define voltage just as electrostatic potential difference between two points. A circuit needs things like batteries. We will talk about this later.)

Now, back to the current – the dynamics of it, in semiconductors.

The average net velocity **u** is often called the drift velocity (\mathbf{v}_d) , as it's driven by the field **E**: $\mathbf{v}_d = \mu \mathbf{E}$

 μ : a proportional constant (material property) called "mobility"

But, think about it. $\mathbf{E} = \mathbf{F}/q$ — Charge of the carrier. -e for the electron. $\mathbf{v}_d \propto \mathbf{F}$ In semiconductor and circuit books, q stands for e.

Does this contradict Newton's second law?

Now, back to the current – the dynamics of it, in semiconductors.

The average net velocity **u** is often called the drift velocity (\mathbf{v}_d) , as it's driven by the field **E**: $\mathbf{v}_d = \mu \mathbf{E}$

 μ : a proportional constant (material property) called "mobility"

But, think about it. $\mathbf{E} = \mathbf{F}/q$ — Charge of the carrier. -e for the electron. $\mathbf{v}_d \propto \mathbf{F}$ In semiconductor and circuit books, q stands for e.

Does this contradict Newton's second law?

Here is roughly what happens:

On average, a charge carrier collides with something every time interval τ . It loses/forgets its \mathbf{v}_d , or "randomizes". Then it starts over. Therefore, $\mathbf{v}_d = \mathbf{a}\tau$. By Newton's second law, $\mathbf{a} \propto \mathbf{F} \propto \mathbf{E}$ thus $\mathbf{v}_d \propto \mathbf{E}$.

$$\mathbf{J} = \rho \mathbf{u} = nq \mathbf{v}_{d} = nq \mu \mathbf{E} = \sigma \mathbf{E}$$

charge carrier density (unit?)
charge density, not resistivity here

Conductivity $\sigma = nq\mu$

In a semiconductor, you may have both electrons and holes, carrying -e and +e each, respectively.

$$\mathbf{J} = -ne\mathbf{v}_{e} + pe\mathbf{v}_{h} = -ne(-\mu_{e}\mathbf{E}) + pe\mu_{h}\mathbf{E} = (n\mu_{e} + p\mu_{h})e\mathbf{E} \equiv \sigma\mathbf{E}$$

electron density hole density

or, in the simple scalar form

$$J = nev_{e} + pev_{h} = (n\mu_{e} + p\mu_{h})eE \equiv \sigma E$$

For metals, the concept of mobility is not very useful. There are so many free electrons that only the highest-energy ones contribute to conduction. (Detailed physics way beyond this course) But Ohm's law holds.

For a metal wire or a semiconductor channel of length l and cross section area A,

resistance $R = (1/\sigma)(l/A)$

Read textbook: Section 4-6

(More) Boundary Conditions

Boundaries between different media/materials

Let's look at the boundary between two materials in general.

In each material, we decompose the electric field into normal (n) and tangential (t) components. Imagine a tiny rectangular loop, Δl long and with a zero width, but with the two Δl long sides on opposite sides of the boundary.

The boundary is not necessarily planar.

Recall that the electric field is conservative:

Therefore,
$$E_{2t} \Delta l - E_{it} \Delta l = 0 \implies E_{2t} = E_{it}$$

Special case: medium 1 is a perfect conductor:

$$E_1 = 0 \implies E_{it} = 0 = E_{zt} = 0$$

The electric field at a perfect conductor surface must be perpendicular to the surface.

$$\vec{E} \cdot d\vec{l} = 0$$

$$\mathcal{Z} = \mathcal{D} \Rightarrow \mathcal{L}_{2t}$$