
The electrostatic field Is conservative (just like gravity)
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The meaning of the negative sign: 
An external force –F is exerted to 
overcome the electrostatic force F.  
Here W is the work done by the 
external (non-electrostatic) force.
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W is independent of the path.  Therefore,

Because the field is radial, E = E(r)r (Coulomb’s law) 
for a point charge. 

By superposition, for any electrostatic field,

But why is W independent of the path? 
Let’s first consider the field of a point charge.

No work done when moving 
the charge sideways

Such a field is said to be conservative.



We should point out an important fact. For 
any radial force the work done is 
independent of the path, and there exists a 
potential. If you think about it, the entire 
argument we made above to show that the 
work integral was independent of the path 
depended only on the fact that the force 
from a single charge was radial and 
spherically symmetric. It did not depend 
on the fact that the dependence on 
distance was as 1/r2—there could have 
been any r dependence.

--Richard Feynman

Similarly, the gravitational field is also 
conservative, due to the similarity between 
Newton’s law of universal gravity and 
Coulomb’s law.

Exceptions are found only in abstract art:

Waterfall by M.C. Escher

In the physical world, you need a pump, 
just as you need a battery (or the likes) 
for a circuit. 

Side note: A non-conservative field does 
not violate the conservation of energy.



Since the work to be done to move a charge q
from a to b is independent of the path and 
proportional to q , we can define a quantity called 
potential, just like height in the gravitational field. dl

ab

Potential at a
Potential at b

Work to be done

−E is sort of the derivative of V in 3D space.  In 1D, we have

This “vector derivative” is called the gradient.
The gradient of a scalar function, or, as we call it here, a scalar field V(x,y,z), is 

The vector sum of the three derivatives in respective directions

Think about the infinitely large 
parallel plate capacitor.



http://moodle.capilanou.ca/mod/book/view.php?id=328667&chapterid=1401

The gradient is the steepest slope.
In the direction perpendicular to the gradient, 
the slope is zero.

∆x
∆y

http://moodle.capilanou.ca/mod/book/view.php?id=328667&chapterid=1401

Visualize the gradient in 2D

Δ𝐥𝐥



The gradient of a scalar function, or as we call it here, a scalar field V(x,y,z), is 

The vector sum of the three derivatives 
in respective directions

Recall that we defined

Thus

The electric field is the negative gradient of the potential.

Thus we can write the gradient of V(x,y,z) as 

∆x
∆y

http://moodle.capilanou.ca/mod/book/view.php?id=328667&chapterid=1401

Visualize the gradient in 2D

Δ𝐥𝐥Δ𝑧𝑧 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

Δ𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

Δ𝑦𝑦

= 𝛻𝛻𝑓𝑓 ⋅ Δ𝐥𝐥



Example: potential distribution due to a point charge

Recall that no work is done if we move a probe charge (not the charge q) sideways. 
So move it right towards q.

Take a reference 

Pay attention to the sign: a force −q’E need to push a probe charge q’

Why is the negative sign gone?

If in free space, ε = ε0



Poisson’s Equation

Notice that this is a scalar

Recall that

is called the Laplacian operator.



Poisson’s Equation

Recall this problem.
One way to solve it is to use the 1D Poisson’s Equation.
Here, 1D means there is no variation in the other two 
dimensions – the slabs are assumed to be infinitely large in 
lateral dimensions. 

Do Problems 1, 2 of Homework 9. Read Sections 4-5 and 3-4 of textbook.
Continue working Chapter 3.



Current & Ohm’s Law
Let’s first consider the current w/o asking what drives it.  (The kinematics of current)

Conductor w/ mobile charge density ρV, or 
just ρ for short.

Mobile charge carriers move at an average 
net velocity u.

Special case in Fig. (a):
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where n is the mobile electron density and e the electron charge.

General case in (b):

What are the mobile charge carriers 
in metals?

Usually the overall conductor is 
charge neutral.
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∆
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qI J = ρu

A/m2 = (C/m3)(m/s) = (C/s)/m2
The unit of J is....?

Closely read these notes and Section 4-2.2 for details.
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More generally, J = ρu

A/m2 = (C/m3)(m/s) = (C/s)/m2

The unit of J is....

For an arbitrary surface S (not 
necessarily planar),

sJ dI
S

⋅= ∫

What about a closed surface? ???=⋅∫ sJ d
S



0=⋅∫ sJ d
S

for an arbitrary closed surface.
Kirchhoff's current law (KCL)!

Recall that 0=⋅∫ lE d
C

for any arbitrary closed  contour C.

What does this correspond to in circuit theory?

Kirchhoff's voltage law (KVL)

(Not exactly, if we define voltage just as electrostatic 
potential difference between two points. A circuit needs 
things like batteries. We will talk about this later.)

Closely review these notes and textbook Section 4-2.2.



Now, back to the current – the dynamics of it, in semiconductors.

The average net velocity u is often called the drift velocity (vd), as 
it’s driven by the field E: vd = µE

µ:  a proportional constant (material property) called “mobility”

But, think about it.  E = F/q
vd ∝ F

Does this contradict Newton’s second law?

Charge of the carrier.  −e for the electron. 
In semiconductor and circuit books, q stands for e.



The average net velocity u is often called the drift velocity (vd), as 
it’s driven by the field E: vd = µE

µ:  a proportional constant (material property) called “mobility”

But, think about it.  E = F/q
vd ∝ F

Does this contradict Newton’s second law?

Here is roughly what happens:
On average, a charge carrier collides with something every time 
interval τ.  It loses/forgets its vd, or “randomizes”.  Then it starts over. 
Therefore, 𝐯𝐯d = 𝐚𝐚𝜏𝜏. By Newton’s second law, 𝐚𝐚 ∝ 𝐅𝐅 ∝ 𝐄𝐄 thus 𝐯𝐯d ∝ 𝐄𝐄.

J = ρu = nqvd = nqµE = σE

charge density, not resistivity here

charge carrier density (unit?)

Conductivity σ = nqµ

Charge of the carrier.  −e for the electron. 
In semiconductor and circuit books, q stands for e.

Now, back to the current – the dynamics of it, in semiconductors.



In a semiconductor, you may have both electrons and holes, 
carrying −e and +e each, respectively.

J = −neve + pevh = −ne(−µeE) + peµhE = (nµe + pµh)eE ≡ σE

electron density hole density

or, in the simple scalar form

J = neve + pevh = (nµe + pµh)eE ≡ σE

For a metal wire or a semiconductor channel of length l and cross section area A,

resistance R = (1/σ)(l/A)

Read textbook: Section 4-6

For metals, the concept of mobility is not very useful. 
There are so many free electrons that only the highest-energy ones contribute 
to conduction. (Detailed physics way beyond this course)
But Ohm’s law holds.



(More) Boundary Conditions

Boundaries between different media/materials

Let’s look at the boundary between two materials in general.
In each material, we decompose the electric field into normal (n) and tangential (t) components.
Imagine a tiny rectangular loop, ∆l long and with a zero width, but with the two ∆l long sides 
on opposite sides of the boundary.  

Recall that the electric field is conservative:

The boundary is not necessarily planar.

Therefore,

Special case: medium 1 is a perfect conductor:

The electric field at a perfect conductor surface must be perpendicular to the surface.
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