
A Few Things
Will accelerate pace.

Please preview the slides before each class.

Sometimes old slide sets are not updated on the course website. 

Test 2 will be take-home

Thu 11/17/2022 (class canceled)

Final Exam: Fri 12/9 in this classroom



Magnetostatics: Part 1
We present magnetostatics in comparison with electrostatics.

Sources of the fields:
Electric field E: Coulomb’s law.
Magnetic field B: Biot-Savart law.

Forces exerted by the fields:
Electric: F = qE
Magnetic: F = qv×B

Mind the notations, both 
printed and hand-written

Does the magnetic force do any work to the 
charge?

F ⊥ B, F ⊥ v

Charge E

Current (moving charge) B



Positive charge moving at v ⊥ B Negative charge moving at v ⊥ B

By measuring the polarity of the induced voltage, 
we can determine the sign of the moving charge.

If the moving charge carriers are in a perfect conductor, then we can have an 
electric field inside the perfect conductor. Does this contradict what we have 
learned in electrostatics?

Notice that the direction of the magnetic force is the same for both 
positive and negative charge carriers, given the same current direction.

Similar to what happens in a battery, something non-electrostatic is pushing the charges.
We will revisit this question when we discuss the electromotive force.

Steady state: 𝐸𝐸 = 𝑣𝑣𝑣𝑣

The conductor as a whole experiences a total external magnetic force 
(while the electric force is internal).  

We paused here on Tue 4/19/2022. Please work on Problems 1 & 2 of HW10 to prepare for the next class.



If the charge 
carrier is negative

Magnetic force on a current carrying wire

The magnetic force is in the same 
direction regardless of the charge 
carrier sign.

Carrier density Charge of each carrier

For a small piece of the wire dl

scalar

Notice that v // dl

For a wire from point A to point B,

d𝐅𝐅 = 𝐼𝐼d𝐥𝐥 × 𝐁𝐁



For a wire from point A to point B,

For a wire loop,

If B is a constant all along the loop,

Let’s look at a rectangular wire loop in a uniform magnetic field B.

F1 + F3 = 0, F2 = F4 = 0 F1 + F3 = 0, F2 + F4 = 0

At any position, the total force is 0.  Will the loop move?

because



A rectangular wire loop in a uniform magnetic field B.

F1 + F3 = 0. 
F2 = F4 = 0 since these sides // B.

F1 + F3 = 0, F2 + F4 = 0.
Therefore no translation.

At any position, the total force is 0. Therefore the center of mass does not move. 
But there is a torque T, driving the loop to rotate.

Torque T is a vector.  Its direction is defined according to the right hand rule.

Area

Angular velocity ω
(vector)

Similar to Newton’s 2nd law, the angular acceleration
(vector) is proportional to net torque.

This is the principle behind many motors.



Define the magnetic moment

Normal unit vector of the loop

If the loop has N turns, 

For a planar wire loop in a uniform magnetic field B,

𝑇𝑇 = 𝐼𝐼𝐼𝐼𝑣𝑣 sin𝜃𝜃 = 𝐼𝐼𝐼𝐼 �𝐧𝐧 × 𝐁𝐁 .

so that we can conveniently write

An N-turn wire loop is described by a magnetic moment 𝐦𝐦 = 𝑁𝑁𝐼𝐼𝐼𝐼�𝐧𝐧. 
A locally uniform (within loop area) magnetic field B exerts to the 
loop a torque

, B

m

T

Although derived for a rectangular loop, this relation is general.

Direction of T so defined, we have
𝑑𝑑𝛚𝛚
𝑑𝑑𝑡𝑡 ∝ 𝐓𝐓

𝑑𝑑𝛚𝛚
𝑑𝑑𝑡𝑡 ∝ 𝐓𝐓.



B

m

T

This is the principle of many electric motors.

We know that a magnetic field does not do work.
But in the motor the magnetic field provides the torque that drives the coil to rotate, 
and the coil can drive a load.  Work is done.
What does the work?
Hint: The magnetic field can be provided by a permanent magnet, which does not fade 
because the motor is running.  In other words, no energy is taken from or given to the 
permanent magnet. 

𝑑𝑑𝛚𝛚
𝑑𝑑𝑡𝑡

∝ 𝐓𝐓.



More on motors (for your possible interest)
DC motor

B

F

F

F
F

No torque, but coil keeps 
rotating due to inertia

If current flows 
in same direction

FF

Coil will 
eventually stop

If current reverses 
direction

F

F

http://resource.rockyview.ab.ca/rvlc/physics30_BU/Unit_B/m4/p30_m4_l03_p4.html

See also:
https://www.youtube.com/watch?v=Y-v27GPK8M4



FYI: AC Motor

Rotates at the frequency of the sine wave: “synchronous motor”.
Random rotation direction.

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html



The unit of magnetic field B

coulomb

newton

tesla
ampere

For charge q in electric field E, F = qE. Therefore 𝑣𝑣𝑣𝑣 and E are the same dimension.

We will revisit this topic later, giving you other forms of the unit tesla (T).

We have discussed the force exerted by a magnetic field on moving charges. 
Next, let’s see how the magnetic field is generated.

Review textbook: Sections 5-1. 
Finish Problems 1 & 2 of Homework 10.



Magnetic field (Biot-Savart law) 

dl is a small segment of a 
wire carrying a current I

An electric current (i.e. moving charges) generates a magnetic field. 
Again, we talk about this in comparison with the electrostatic counterpart. 
But the point charge is not analogous to the current element (Idl).



Electric field 

Magnetic field (Biot-Savart law) 

dl is a small segment of a 
wire carrying a current I

dD // �𝐑𝐑

An electric current (i.e. moving charges) generates a magnetic field. 
Again, we talk about this in comparison with the electrostatic counterpart. 

Consider ρ dV as the analogue of Idl.



ρ includes only the “external” charge, not the polarization charge, 
which is taken care of by the material (medium) parameter ε. 

Here, R is the vector from a volume element dV
to the point where we want to find dE. 

HerePreviously used

Regardless of the medium, we can write this equation in terms of D. EED εεε ≡≡ r0

D is what the external charge distribution ρ generates. 
E is what a probe charge q feels: F = qE. 
(Contribution to E by polarization charge is accounted for by 𝜀𝜀𝑟𝑟.) 

Slight notation change



Electric field ρ includes only the 
“external” charge, not the 
polarization charge, 
which is taken care of by 
the material (medium) 
parameter ε. 

D is what the external charge distribution ρ generates. 

Magnetic field (Biot-Savart law) 

dl is a small segment of a 
wire carrying a current I

I includes only the “external” current, 
not the magnetization current, which 
is accounted for by the material 
(medium) parameter μ (to be 
discussed later). 

H is what the current I generates.

Both fields are 
proportional to 
1/R2. 

dD // �𝐑𝐑

An electric current (i.e. moving charges) generates a magnetic field. 
Again, we talk about this in comparison with the electrostatic counterpart. 



Electric field ρ includes only the 
“external” charge, not the 
polarization charge, 
which is taken care of by 
the material (medium) 
parameter ε. 

EED εεε ≡≡ r0

D is what the external charge distribution ρ generates. 
E is what a probe charge q feels: F = qE. 

Magnetic field (Biot-Savart law) 

dl is a small segment of a 
wire carrying a current I

I includes only the “external” current, 
not the magnetization current, which 
is accounted for by the material 
(medium) parameter μ (to be 
discussed later). 

B = µ0µrH = µH

H is what the current I generates.
B is what a probe charge q feels: F = qv×B. 

Both fields are 
proportional to 
1/R2. 

dD // �𝐑𝐑

An electric current (i.e. moving charges) generates a magnetic field. 
Again, we talk about this in comparison with the electrostatic counterpart. 



Example 1: Magnetic field of a current-carrying straight wire of finite length
Read on your own. Example 5-2 of textbook: pp. 237 in 8/E 
(pp. 245 in 7/E). 
Just sum up piece by piece (taking the integral). This example 
is for you to appreciate the shape of the magnetic field in 
relation to the current. 
But, you need to have a closed circuit. The solution is a good 
approximation only far away from other parts of the circuit. 
See Problem 3 of Homework 10.
Take this good approximation to the limit of an infinitely long
straight wire, we have

Unit vector in the φ direction in the cylindrical coordinate

We will discuss an easier way to get to this equation later. 

From this equation, you see the unit of H is A/m. 

Using the result for the wire of a finite length, do Homework 10 Problem 3.
Using the result for the infinitely long wire, do Homework 10 Problem 4.
(Problem not well stated. Change “power cable” to “DC current-carrying wire”, as we 
usually understand a “power cable” as two wires carrying opposite AC currents.)



Example 2: Magnetic field of a current-carrying circular wire loop

z
dH

z

dl

Find the magnetic field at any location z on the axis of a 
current-carrying circular ring.
The gap is made small, therefore can be ignored.  
So, treat it the same as Example 5-3 of textbook. But this 
is more realistic.
The feed wires carry opposite currents, therefore 
contribute no magnetic filed. 
Just sum up piece by piece (taking the integral). This 
example is, again, for you to appreciate the shape of the 
magnetic field in relation to the current. 

Horizontal components due to diametrical elements cancel.  
Therefore consider only vertical component of dH: 



z

dl

Perimeter (circumference)

Near field Far field 

Work out the math details 
offline on your own and then 
check with the book.



Near field Far field 

The big pictures: 
not limited to the 
z axis

For the far field, recall that we defined

H // m
Direction of m follows right hand rule.

Again, far from the loop, the shape of the loop 
does not matter. The far field is the same as a 
small magnet.

http://www.thesciencemill.com/Research/edm/edm_paper.php

I

m





Any current carrying loop has a magnetic 
moment m, and the loop is called a magnetic 
dipole. It’s equivalent to a small magnet. (We 
will talk explain why when we discuss 
magnetic materials.)

There is no need for a physical wire.  For 
example, an electron orbiting a nucleus forms 
a magnetic dipole. (More on this when we 
discuss magnetic properties of materials.)

We call such a loop a magnetic dipole because 
its magnetic field has the same shape as the 
electric field of the electric dipole, when we 
consider only the far field.

http://www.thesciencemill.com/Research/edm/edm_paper.php



If you zoom in and look at the near field, you will see a big difference.

http://www.rakeshkapoor.us/ClassNotes/classnotes.php?
notes=MagneticField&index=2

http://physics.stackexchange.com/questions/318150/how-do-
electric-field-lines-form-only-open-loops

Electric dipole: E lines come out of + 
charge and end at − charge. In math 
language,

Magnetic dipole: B lines form loops. In math 
language,

There is no such thing as “magnetic charge”.



Since the electrostatic field E must go from the + charge 
into the − charge, its field lines cannot form loops.  
Mathematically,

Will explain this notation

Such a field is said to be conservative.

The loop integral of the magnetic field is 
therefore finite. What is it?

Ampère’s law

In contrast, the magnetic field must form loops.

Such a field is said to be solenoidal.



Ampère’s law

Ampère’s law is obeyed by all loops, regardless of size.

We shrink a loop to infinitesimally small, and define the “curl”

Unit normal vector

Here, we state the way to calculate the curl in the Cartesian coordinate without proof:

determinant

Shrink this loop (and 
the area it encloses) to 
infinitesimally small



Stoke’s theorem (the math)

Contour C

Consider the loop integral of H around the contour C. 
Imagine a dense grid.
For each small loop, by definition: 

Therefore,

This is just math.

Now the physics kicks in:

Therefore,

Integral form (big picture) 
of Ampère’s law

Differential form (small picture) of Ampère’s law

Similarly,



Example 3: Magnetic field of a current-carrying infinitely-long straight wire
Wire carries current I. Current density uniformly distributed.

For r < a, 

For r > a, 

Same result as got from Biot-Savart law in Example 1. 

J can be non-uniform. For non-uniform J, do Homework 10 Problem 6.
Also finish Homework 10 Problem 7 (Problem 3.58 in 8/E of textbook).
For other geometries, read the following in text book:

Example 5-5 – Toroidal coil
Example 5-6 – Infinitely large current sheet
Section 5-7.1 – Solenoid (we put off discussion on inductance)

Go through the mathematical details, but more important, get a visual sense of B fields of 
currents in these geometries.  Look at the figures and think.



Further thinking about Example 5-6 –
Infinitely large current sheet

Consider a pair of such sheets with 
opposite surface current densities:

Compare this with the parallel-plate capacitor. 

We went through this slide set up to the last slide 
on Thu 11/10/2022 and will resume from here 
next time.



Further thinking about Section 5-7.1 – Solenoid

The big pictures: B field distribution of solenoids of 
finite lengths
Then, calculate 𝐁𝐁(𝑧𝑧) along the axis using the result 
of example 2 of this slide set (field along axis of a 
single wire loop).



Then, find the limit as solenoid length ∞. 
It is stated that the field inside a long solenoid is 
uniform.  
Try an alternative way: 
Start from the ideal model of infinitely long, tightly 
wound solenoid. Mathematically prove (using 
symmetry argument and logic) that the B field inside 
is indeed uniform and that 𝑣𝑣 = 𝜇𝜇𝜇𝜇𝐼𝐼. Consider the 
ideal model solenoid so tightly wound that you can 
treat it in a similar manner as in the previous slide.



Now, we consider the interaction between two wires, in 
comparison with two charged bodies in electrostatics. 

What is the force between the two plates of an infinitely 
large parallel-plate capacitor?

Is this right?



What we did wrong was double counting, a sort of “creative accounting”.
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… …is the total field due to both plates.

The force is exerted on one plate by the field due to the other.
Therefore, 

The positive charge sheet 
in the field of the 

negative charge sheet

This another way to appreciate the factor ½. 

An old slide from a previous lecture



Similarly, we consider one wire placed in the field of the other.
The distance between the wires is d.
The field of wire 1 at the location of wire 2 is:

Therefore the force on wire 2 is

Pay attention to the direction:
Two wires carrying currents in the same direction attract each other.

Do Homework 10 Problem 5.

Review textbook: Chapter 5 Overview, Sections 5-1 through 5-3
Finish Homework 10.

Example 4: Interaction between two current-carrying infinitely-long straight wires
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