ECE341 Electromagnetic (EM) Fields

Gong Gu

Fall 2022

Introduction

The electromagnetic force is one of the four fundamental forces of Nature. Charged particles interact by the EM force, via EM fields. ...

Introduction

The electromagnetic force is one of the four fundamental forces of Nature. Charged particles interact by the EM force, via EM fields. ...

That's a typical introduction.

We are going to spend \sim half a semester talking about these cables.

https://www.galvinpower.org/best-coaxial-cables-for-4k/

https://www.dx-wire.de/lng/en/wire-cable/300-ohm-twinlead/300-ohm-twin-lead.html

Voltage along a cable can vary! How does the ideal wire sustain a voltage?

Voltage along a cable can vary! How does the ideal wire sustain a voltage?

f	λ	Comments		$f\lambda = c,$
60 Hz	5000 km	Power		$c = 3 \times 10^8 \mathrm{m/s}$
600 kHz	500 m	Medium wave AM radio		
0.3 GHz	1 m		$\left \right\rangle$	
1.5 GHz	20 cm	CPU clock rate		microwave
30 GHz	1 cm	Data communication] [
300 GHz	1 mm]]	

Here, λ is the wavelength in free space. Wavelength varies in materials.

There is capacitance between any two pieces of conductors. A pair of plates, wires, etc., or the core and shields of a co-ax cable.

A piece of wire is actually an inductor

Voltage v along the wire

What do we really mean when we say "capacitor" and "inductor"?

Circuit elements are models

_

$$V = I = V/R$$
Resistor: The simplest element. But why $I \propto V$?
(What are I and V after all?)

$$--- \qquad \qquad i = C \, dv/dt \qquad \begin{array}{l} \text{Capacitor: The simplest model of the capacitor is a pair} \\ \text{of parallel conductor plates. But why } i \propto dv/dt? \end{array}$$

$$v = L di/dt$$

Inductor: The simplest model of the inductor is a conductor coil. But why $v \propto di/dt$?

Electrical elements vs. components

Ideal lumped electrical elements represent real, physical electrical components but they do not exist physically.

Components (physical)

Elements (idealized)

$$-\sqrt{R}$$
 $I = V/R$

Resistor: The simplest element. But why $I \propto V$? What are *I* and *V* after all?

$$\vdash i = C \frac{di}{di}$$

Capacitor: The simplest model of the capacitor is a pair of parallel conductor plates. But why $i \propto dv/dt$?

$$v = L \frac{di}{dt}$$

Inductor: The simplest model of the inductor is a conductor coil. But why $v \propto di/dt$? Circuit theory is a simple part of EM (black boxes: lumped elements)

component Inside the black boxes: element $-|| - i \propto dv/dt$ $Q \propto v \Rightarrow Q \equiv Cv$ *C* is a proportional constant. $C\frac{dv}{dt} = \frac{dQ}{dt} = i$ Current is charge flow per time. component element $v = L \frac{di}{dt}$ $B \propto i$ Changing B field induces E. $di/dt \propto (dB/dt \propto E) \propto v$ A wire (or a pair of wires) is also an inductor!

A circuit element is a model of a physical phenomenon, not necessarily a circuit component. This course is about electromagnetics (EM), the foundation of Electrical and Computer Engineering, or, how electricity *really* works. -- Look *into* the black boxes.

- Circuit theory is a simple model of EM, so it was taught first.
- However there are an increasing number of cases where circuit theory fails (e.g. faster computers, higher communications frequencies, power electronics, power system transients,), and EM must supplement circuit theory. *But, don't worry*...
- Also EM is the basis for many devices (machinery, antennas, etc.), and one of the physical foundations of any active electronic device.
- Serious hazards for electrical and computer engineers in all areas, such as interference and non-ideal behavior of circuit elements, are increasing with the higher frequencies today for Electrical and Computer Engineers in all areas.

Read this introduction again at the end of the semester after we have presented all the material. You will have a deeper understanding and a delight from it.

Textbook:

Ulaby et al, Fundamentals of Applied Electromagnetics (8/E or 7/E)

"Modern" sequence to teach the material: start with transmission lines based on a version of "circuit theory"

Relax the requirement of previous knowledge in physics.

Recommended reference books:

Ramo *et al*, *Fields and Waves in Communication Electronics* Old school, rigorous. Start from "true" field theory – Maxwell's equations A bit hard on today's students, but it's good.

Inan, Inan, and Said, *Engineering Electromagnetics and Waves* Another modern book in the same sequence as our textbook. Useful additional insights (one example)

Jackson, Classical Electrodynamics

A classic for physicists and microwave, optical engineers

(The word "classical" in the title has a slightly different meaning.)

Classics are not easy to read.

A different unit system is used, which we engineers may not be used to.

(Some equations look different, unlike elsewhere in physics, where different unit systems give you the same equations but only "different" physical constants.) Venture into it only if you are really into this field after this course. Second Edition

ENGINEERING ELECTROMAGNETICS AND WAVES

Stare at this picture. See the difference?

The picture we are more "used to":

Aziz S. INAN

Ryan K. SAID

Umran S. INAN

Requirements & Evaluation

Homework (or, more appropriately, exercises)

To be finished at the start of class on certain days, indicated in <u>the schedule</u>. Most problems will be from 8/E of textbook.

Not graded. For your exercise. But not optional.

Do it first, and then check against my answers online. Not the other way!

<u>Quizzes</u>

Random, in-class or take-home. Graded. (Purpose is NOT attendance tracking)

<u>Tests</u>

Partially reflect homework (exercises) or sometimes extend the quizzes, and are certification that you've learned what you should. Two major tests, on the days indicated in the schedule.

Lab and Project

Hands-on labs and a simulation project.

Grading

Test 1: 15%; Test 2: 15%; Quizzes: 10% Project: 15%; Labs: 10% Final exam: 35%

Project

Circuit simulations to transition you from lumped element-based circuit theory

Part 1

Generator: 1 V step, rise time = 0.1 ns. Internal impedance 50 Ω .

Plot the two voltages V_1 and V_2 for the above two cases.

Hint: You may make mistakes. Do a sanity check by a "back of an envelope" analysis. At the very least, find out the steady state.

Does the simulation give you more or less what you expect?

Ongoing project. Stay tuned for next steps.

<u>Schedule</u>

The syllabus (including course schedule) and all lecture slide sets are online, on course website and Canvas.

The schedule is subject to changes, so check it often.

Homework may require knowledge not covered in class at the time, in preparation of the next class.

<u>Website</u>

http://web.eecs.utk.edu/~ggu1/files/UGHome.html

All class notes and other important information. Check often.

Questions for you

Fixed office hours (physical/virtual) or ad hoc questions by email?

Thu 9/1 All vehicles should be removed from parking lots by 1 p.m.

Remote.

<u>Tips</u>

How to do well in this course (and others) and prepare to be a successful engineer:

- Study daily, not just the four nights before tests.
- Don't miss classes (and the quizzes).
- Review lecture notes and textbook before doing homework.
- Don't rely on somebody else (or my answer sheets online) for homework.

<u>Tips</u>

How to do well in this course (and others) and prepare to be a successful engineer:

- Study daily, not just the four nights before tests.
- Don't miss classes (and the quizzes).
- Review lecture notes and textbook before doing homework.
- Don't rely on somebody else (or my answer sheets online) for homework.
- Aim toward becoming a good engineer.
- See lab as an inquiry not following a cook book.
- Don't just do the project; think and get insight.
- Ask questions, take notes.

<u>Tips</u>

How to do well in this course (and others) and prepare to be a successful engineer:

- Study daily, not just the four nights before tests.
- Don't miss classes (and the quizzes).
- Review lecture notes and textbook before doing homework.
- Don't rely on somebody else (or my answer sheets online) for homework.
- Aim toward becoming a good engineer.
- See lab as an inquiry not following a cook book.
- Don't just do the project; think and get insight.
- Ask questions, take notes.
- Pursue understanding of the principles not just memorizing the symbols and equations. (True understanding vs. constructs of knowledge systems)
- Try to visualize phenomena don't just manipulate math symbols.
- Relate this material to other courses.
- Revisit and reinforce the above three during the course, and, in your future study (e.g. read this Introduction again at end of course).
- Think in practical terms.

Topics off the topic

Artificial intelligence and future engineering jobs (How to make yourself irreplaceable by machines)

AlphaGo defeated best human players (old news now). Now there's AlphaGo Zero

A plumber working in my basement

Computers recognize cats

Human babies recognize cats

(Not so) Recent story:

https://www.theverge.com/2018/8/23/17772376/openai-dota-2-pain-game-human-victory-ai

Humans grab victory in first of three Dota 2 matches against OpenAl

"The bots are still very good at moment-to-moment, but they seem bad on macro-level decisions."

Features of this course

- Not so "structured" as you might expect
- Learn how to define your problems
- Foster curiosity, the habit of thinking (as humans as opposed to machines)
- Pursue true understanding, not mimicking
- When you understand the why, the how will come to you naturally
- Lectures often take different approaches than does the textbook
 - Review these notes (they are online)
- Class is long; I will try not to bore you (but you need to put down your phones)
- The project makes you think
- Frequent in-class quizzes to keep you engaged
 - Again, you need to review the class notes (they are online)
- Not easy to fail

Overview of course

- General concept of waves
- Transmission line theory derived from a form of circuit theory (Yes, it works.)
- Electrostatics

(We start to discuss the "real" EM theory.)

- Magnetostatics
- Dynamic fields

(Nothing in the world is "static". In general, the dynamic field is not just the same as static fields with time variation, as in "quasi-static" approximation. There is "dynamics," although sometimes the "quasi-static" picture works. BTW, under what condition does the "quasi-static" picture work?)

• EM plane waves

(The simplest EM waves. You get a sense how waves arise from dynamic fields)

This course is about the *fundamentals*. More cool stuff (waveguides, antennas, etc.) will be covered in advanced courses (#s may change):

- ECE 443 Antenna Systems Engineering
- ECE 444 Microwave Circuits
- Graduate courses: ECE 541, 545, 546, 547

We finished this lecture on Thu 8/25/2022.