
Dynamic Fields, Maxwell’s Equations (Chapter 6)

So far, we have studied static electric and magnetic fields.  In the real world, 
however, nothing is static.  Static fields are only approximations when the fields 
change very slowly, and “slow” is in a relative sense here.

To really understand electromagnetic fields, we need to study the dynamic fields.
You will see the electric & magnetic fields are coupled to each other.

Four visual pictures to help you understand the four Maxwell’s equations

Two remain the same for dynamic and static fields. Two are different.

ρε =⋅∇=⋅∇ DE

QdVd ==⋅ ∫∫ ρsD

(1)

This holds for dynamic fields even when ρ changes with time.

Question: how can ρ change with time?

00 εε
ρ QdVd ==⋅ ∫∫ sE

ρ and Q represent external charge.



This holds for dynamic fields 
even when ρ changes with time.

Question: how can ρ change with time?

00 εε
ρ QdVd ==⋅ ∫∫ sE

ρ and Q represent external charge.

FYI

Consider a charging capacitor. The current density in the plates is J. 
Imagine a cylinder spanning both plates of top/bottom surface area A. 

0=⋅∫ sJ d
S

For this cylinder, 

I = JAI = JA

But what about the black cylinder? 

00 εε
ρ QdVd ==⋅ ∫∫ sE 𝜀𝜀

𝜕𝜕
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surface inside the dielectric

Define displacement current density 𝜕𝜕𝐃𝐃
𝜕𝜕𝑡𝑡

= 𝜕𝜕
𝜕𝜕𝑡𝑡

(𝜀𝜀𝐄𝐄), then 0=⋅∫ sJ d
S

holds for all closed

surfaces by including displacement currents.
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What goes in must come out: no such thing as a magnetic charge.
Always true, static or dynamic.
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(3) The electrostatic field is conservative

Faraday’s law:

This is why we can define “potential.”

Pay attention to this negative sign.

t∂
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This electric field induced by a changing magnetic field is 
not conservative!  It’s not an “electrostatic field” even 
when        is a constant.  DC is not necessarily electrostatic.

Cannot define a potential!

E
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B

B



t∂
∂

+=×∇
DJH

SDSDJlH d
t

Id
t

d ⋅
∂
∂

+=⋅
∂
∂

+=⋅ ∫∫∫ )(

(4) Ampere’s law (static)

Idd =⋅=⋅ ∫∫ SJlH

JH =×∇

Ampere’s law (dynamic)

Displacement 
current

i

I

H

H

D

We have covered the static case in pretty much detail.
Here, in the dynamic case the current could include the 
displacement current.

(3) and (4) are about the coupling between E & M fileds. They are 
the foundations of electromagnetic waves, to be discussed in Ch. 7.

Displacement current density
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In Chapter 6, we focus on Eq. (3), Faraday’s law:

Pay attention to this negative sign. E

B

Plan view:
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In Chapter 6, we focus on Eq. (3), Faraday’s law:

Pay attention to this negative sign. E

B

Plan view:

Place a wire loop in 
this electric field. It 
will drive a current.

ab

B

+ −
𝐄𝐄stat: external electrostatic field

The non-electrostatic field
establishes an electrostatic 
potential difference Vb − Va

Recall the following: 
A potential energy difference 𝑑𝑑𝑄𝑄
results from a non-electrostatic force 
Fnes = −𝑑𝑑Estat doing work to 
charge 𝑑𝑑 against the electrostatic 
force 𝑑𝑑Estat:

𝑑𝑑𝑄𝑄 = �
𝑎𝑎

𝑏𝑏

Fnes � d𝐥𝐥 = −𝑑𝑑�
a

b

𝐄𝐄stat � d𝐥𝐥

Here, Fnes = 𝑑𝑑E Non-electrostatic!

𝑄𝑄 = �
𝑎𝑎

𝑏𝑏
1
𝑑𝑑 Fnes � d𝐥𝐥 = �

a

b

𝐄𝐄 � d𝐥𝐥

= −�
a

b

𝐄𝐄stat � d𝐥𝐥
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In Chapter 6, we focus on Eq. (3), Faraday’s law:

Pay attention to this negative sign. E

B

Plan view:

Place a wire loop in 
this electric field. It 
will drive a current.

ab

This gap is so small that lE d⋅∫a

b
≈

This “voltage” is due to the non-electrostatic field.
It is an “electromotive force.” Just like that of a 
battery, which is due to chemistry.

Vb − Va = Vemf = emf = lE d⋅∫a

b
≈

B

+ −
𝐄𝐄stat: external electrostatic field

The non-electrostatic field
establishes an electrostatic 
potential difference Vb − Va

Loop integral direction 
defined by direction of dB/dt

−Recall the following: 
A potential energy difference 𝑑𝑑𝑄𝑄
results from a non-electrostatic force 
Fnes = −𝑑𝑑Estat doing work to 
charge 𝑑𝑑 against the electrostatic 
force 𝑑𝑑Estat:

𝑑𝑑𝑄𝑄 = �
𝑎𝑎

𝑏𝑏

Fnes � d𝐥𝐥 = −𝑑𝑑�
a

b

𝐄𝐄stat � d𝐥𝐥

−



t∂
∂

−=×∇
BESBlE d

t
d ⋅

∂
∂

−=⋅ ∫∫

In Chapter 6, we focus on Eq. (3), Faraday’s law:

Pay attention to this negative sign. E

B

Plan view:

Place a wire loop in 
this electric field. It 
will drive a current.

ab

Viewed from another perspective:

B

The voltmeter will 
measure a “voltage”

ab

+ −
𝐄𝐄stat: external electrostatic field

Loop integral direction 
defined by direction of dB/dt

The non-electrostatic field
establishes an electrostatic 
potential difference Vb − Va

This gap is so small that lE d⋅∫a

b
≈

This “voltage” is due to the non-electrostatic field.
It is an “electromotive force.” Just like that of a 
battery, which is due to chemistry.

Vb − Va = Vemf = emf = lE d⋅∫a

b
≈

−

−



ab

This “voltage” is due to the non-electrostatic field.
It is a “electromotive force.” Just like that of a 
battery, which is due to chemistry.

Let’s use an analogy to explain the “subtle” difference between an emf and a voltage:

Vb − Va = V 
= Vemf = emf

The pump works against gravity. The battery works against the electrostatic force.

Vb − Va = V = 

Notice that for an electrostatic field

𝐄𝐄stat

a

b +

−
V

Generally, inside the source (e.g. battery), emf = 1
𝑄𝑄 ∫𝑎𝑎

𝑏𝑏 Fnes � d𝐥𝐥, where Fnes is the non-

electrostatic force acting on charge carrier Q, and V = − 1
𝑄𝑄 ∫𝑎𝑎

𝑏𝑏 Fstat � d𝐥𝐥 = −∫𝑎𝑎
𝑏𝑏 Estat � d𝐥𝐥, 

where Fstat is the electrostatic force.

a

b

Vb − Va = Vemf = emf = lE d⋅∫a

b
≈

−�
a

b

𝐄𝐄statd𝐥𝐥

Loop 
direction 
defined 
by dB/dt −



ab
Define magnetic flux

B is therefore called the "magnetic flux density."

=
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐵𝐵 �𝐁𝐁 � �𝐧𝐧 𝑑𝑑𝑑𝑑

=
𝑑𝑑𝛷𝛷
𝑑𝑑𝑡𝑡

≈
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝐵𝐵𝑑𝑑𝑑𝑑

Unit of Φ :
Meaning of the negative sign:
Nominally positive direction of B defines direction of dS, 
such that Φ is positive when dB/dt > 0. 
The negative sign signifies that the direction of E is against 
the right hand rule. This is the key to get the correct 
voltage polarity.
The direction of dS (defined by B), defines the direction in 
which the loop integral is taken: from b to a along the loop 
(rather than across the gap).
But we define the voltage as Vb − Va.
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Loop direction 
defined by dB/dt
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This sign convention is more consistent than that used in the book. 
We do not need to carry the negative sign before dΦ/dt, e.g. in Eq. (6.8).

Lecture of Tue 11/15/2022 ends here. 



ab
Define magnetic flux

B is therefore called the "magnetic flux density."

We may have a coil of N turns :

What if you replace the voltmeter with a load resistor?
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Unit of Φ :

SB d
t

⋅
∂
∂
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≈ −N = N

= 

= = 

Magnetic flux linkage



What if we feed a current to the coil, when there is no external magnetic field?

The current will induce magnetic field B.
This is true, regardless of the coil’s shape or number of 
turns.  For simplicity, we use the expression of B for a 
long solenoid

In the general case, 

If the current changes with time, so does B.

for a long solenoid. in general.

𝑣𝑣 =Vemf = emf = lE d⋅∫a

b
≈ −N

ab

=

B ∝ i Λ ∝ Φ ∝ B ∝ i Define proportional constant 

What’s this?

. The (nominal positive) directions of 
I and B follow the right hand rule.

This changing B induces an emf (as we just discussed):
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𝑣𝑣 = Vb − Va =Vemf = emf = lE d⋅∫a

b
≈ −N =

B ∝ i Λ ∝ Φ ∝ B ∝ i

Define proportional constant 

This is how the inductor works.

For the long solenoid,

squaredarea
The induced electric field acts 
against the current change.

Our consistent sign conversion leads to the correct sign 
in the inductor equation in a straightforward way. 

No need to go through the process every time.
Just keep in mind: The induced electric field acts against the current change.

ab

Loop direction 
defined by B



Example 1:  Inductance of the co-ax cable
Important to understand what’s really going on. 

We assume current flows only at the outer surface of the core 
and the inner surface of the shield.

What’s the magnetic field inside the core (r < a)?
What’s the magnetic field outside the shield inner 
surface (r > b)?

For a < r < b,

Parameter of the filling dielectric

Make sure you get the directions/polarities of the 
quantities correctly.

Consider this rectangle. 
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(This is why we discuss inductance after dynamic fields)



Important to understand what’s really going on. 
We assume current flows only at the outer surface of the core 
and the inner surface of the shield.

For a < r < b,

Parameter of the filling dielectric

Consider this rectangle. 
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Review textbook Section 5-7 up to 5-7.2. Pay attention to the parallel-wire line geometry.
We explain how the inductor works after presenting Faraday’s law for true understanding.

(Not so true for low frequencies. What is the consequence?) 

Make sure you get the directions/polarities of the quantities correctly.

Where is the induced electric field and the “voltage”?
Think about the distributed circuit model of the transmission line.



× × ×

A pair of coupled wires

Voltage 𝑣𝑣 around the loop!

𝐿𝐿𝐿 is inductance 
per length

Capacitance also 
considered

Inductance lumped 
to one side

The model

The inductors (and resistors in lossy lines) are on only one side. 
Which side is which wire???

An old slide
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Energy stored in an inductor
Say, we increase the current i from 0 to I. 
The current induces a magnetic field, which 
increases as i increases.
The increasing  magnetic field induces an electric 
field, which is against the current i. 
The current source therefore has to push the 
current against this non-electrostatic electric field, 
which establish a voltage v. Thus the current 
source does some work.  

𝑣𝑣 =Vemf = emf = lE d⋅∫a

b
≈ −N =

The work done by the current source becomes energy stored in the magnetic field, 
or equivalently, magnetic energy in the inductor:

Using the long solenoid as the archetypical inductor, we get energy density

volume
Just as the parallel plates as the archetypical capacitor. 
And, the conclusion is also general here. 



Compare energy storage by capacitors & inductors

𝑖𝑖 = 𝐶𝐶
d𝜈𝜈
d𝑡𝑡

𝑊𝑊𝑒𝑒
𝑄𝑄

=
1
2
𝜀𝜀𝑑𝑑2

InductorCapacitor

Stored energy

Energy density

Archetypical geometry Infinitely large 
parallel-plate

Infinitely long 
solenoid

Limited by Breakdown ???

Lastly, the unit of inductance

Henry

voltage

volume



Example 2:  emf induced by a time-varying magnetic field

Important to get the directions right from the very 
basic principle; 
Different sign conventions may be adopted, but 
eventually the directions/polarity of measurable 
quantities must be correct.
The key to remember is the negative sign in 
Faraday’s law.  What does it mean?

Compare this with Figure 6-2 in textbook.

Notice that the induced electric field is non-electrostatic. 

Example 3:  emf induced by a time-varying magnetic field

Find the current through the resistor R. 



Review textbook:
Sections 1-3.3, 1-3.4, 4-1, 
Chapter 5 Overview, 
Chapter 6 overview: Dynamic Fields, 
Sections 6-1, 6-2,
Section 5-7 overview, subsections 5-7.1, 5-7.2, Section 5-8

Do Homework 11:  Problems 2 through 4, and 7.



Recall the Hall effect and the force on a current-carrying 
wire in a magnetic field.  See figures to the right. 
If a conductor mechanically moves in a magnetic field, 
its charge carriers move along and the magnetic force 
gives rise to an emf:

The magnetic force is non-electrostatic.

(if B is uniform)

emf due to motion

Generally, inside the source (e.g. battery), emf = 1
𝑄𝑄 ∫𝑎𝑎

𝑏𝑏 Fnes � d𝐥𝐥, where Fnes is the non-

electrostatic force acting on charge carrier Q, and V = − 1
𝑄𝑄 ∫𝑎𝑎

𝑏𝑏 Fstat � d𝐥𝐥 = −∫𝑎𝑎
𝑏𝑏 Estat � d𝐥𝐥, 

where Fstat is the electrostatic force.

Here, emf = 1
𝑞𝑞 ∫𝑎𝑎

𝑏𝑏 𝐅𝐅 � d𝐥𝐥 =

We discussed Hall effect earlier



Recall the Hall effect and the force on a current-carrying 
wire in a magnetic field.  See figures to the right. 
If a conductor mechanically moves in a magnetic field, 
its charge carriers move along and the magnetic force 
gives rise to an emf:

The magnetic force is non-electrostatic.

Hint: Any resistance to the motion?
(see figure to the right)

Recall that the magnetic force does not do work. 
What provides the power?

We discussed Hall effect earlier



This a “generator”.
It generates electric energy from mechanical 
motions.

If we replace the load with a current source, 
the conductor bar will be pushed to move.  
A sort of “motor”.

Again, the magnetic force does not do work. 
If the conductor bar drives a mechanical 
load, work is done.  What does the work? 

Hint: Let’s assume the conductor bar is made of a 
perfect conductor.  Without the magnetic field, 
there is no voltage drop on the bar, i.e., the bar 
consumes no power. When the magnetic field is 
on,  will there be a voltage drop? Why? 

I

The bar is just like any wire:



This a “generator”.
It generates electric energy from mechanical 
motions.

Now we understand why generators convert 
mechanical energy into electric energy 
while the magnetic field does not do work. 

Actual generators are more practical.  
Rotation instead of translation.

Let α be the angle between the coil normal and the magnetic field B.
and

Area A = wl
For a better drawing, see 
Fig. 6-12 in textbook.



A sort of “motor”. 
It converts electric energy to mechanical energy. 
Now we understand why motors convert electric 
energy into mechanical energy while the magnetic 
field does not do work. 

Actual motors are more practical.  Rotation instead of translation:

http://resource.rockyview.ab.ca/rvlc/physics30_BU/Unit_B/m4/p30_m4_l03_p4.html

See also:
https://www.youtube.com/watch?v=Y-v27GPK8M4

AC Motor
DC Motor

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html

I



The “flux rule”

Area A = wl

(if B is uniform)
Consider the increasing flux as the bar is 
moving:

As in Faraday’s law, the induced emf is against the change of the flux.

As in Faraday’s law, the induced emf
is against the change of the flux.

Is this “flux rule” related to Faraday’s law?

a

b

Loop direction 
defined by B

(with loop direction 
defined by B)

Vb − Va =

Loop direction defined by B

a
b

−Vb − Va =

(in our sign convention with loop direction defined by B)



The “flux rule” of moving conductor in static magnetic field

As in Faraday’s law, the induced emf
is against the change of the flux.

Faraday’s law of changing magnetic field
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The induced electric field is against 
the change of the flux.

SB d
t

⋅
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∫Vemf = emf = lE d⋅∫a

b
≈ − =

"Usually such a beautiful generalization is found to stem from a single 
deep underlying principle. Nevertheless, in this case there does not
appear to be any such profound implication. We have to understand the 
rule as the combined effects of two quite separate phenomena."

-- Richard Feynman

emf =

=



emf induced in moving conductor in magnetic field (no need for closed circuit)

Example 4:  emf induced by magnetic field in isolated moving conductor

Review textbook Sections 6-4, 6-5. 
Do Homework 11 Problems 5, 6, 8.  Finish Homework 11.



We lump the polarization effect of a dielectric material into a parameter ε,
and substitute ε0 (for free space) with ε (for the dielectric) in equations.

ρεχε =⋅∇≡+⋅∇ DE)( 00 e ,
where re εεχεε 00 )1( ≡+≡ , EED εεε ≡≡ r0

The polarization charge ρsP is opposite to the external 
charge ρs.  
The polarization field EP is always against the externa 
field Eext. Therefore the name dielectric.
εr = 1+χ > 1, ε > ε0 (It takes more external charge than 
in free space to establish the same Eext.)

Magnetism of materials
Recall the following for a dielectric in an external electric field:

Similarly, in the presence of an external magnetic field, atomic magnetic moments line up.

V
i

i

V ∆
=

∑
→∆

m
M

0
lim

V
i

i

V ∆
=

∑
→∆

p
P

0
limsimilar to

P⋅−∇=Pρ

HM mχ= EP 0εχe=

magnetization polarization

polarization charge
M×−∇=MJJM =   

magnetization current

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧



(external, applied)

EP

(total field)
Eext

V
i

i

V ∆
=

∑
→∆

m
M

0
lim V

i
i

V ∆
=

∑
→∆

p
P

0
limsimilar to

P⋅−∇=Pρ

HM mχ= EP 0εχe=

magnetization polarization

polarization charge
M×−∇=MJJM =   

magnetization current
Important difference

External field due to external current Total field

Notice the different “accounting” for magnetic and electric fields.

H
M

H
solenoid

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧



JJJB +==×∇ 0total0 )(µµ M

B: total effect of external & magnetization currents; felt by probe current.
H: allows us to consider external current only, with magnetization effects lumped into 
materials parameters. B = µ 0H + µ 0M

Compare with dielectric in external electric field:

E: total effect of external & polarization charges; felt by probe charge.
D: allows us to consider external charge only, with polarization effects 
lumped into materials parameters. ε0E = D − P

𝜀𝜀0𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌 + 𝜌𝜌𝑃𝑃

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧

Lecture of Tue 11/22/2022 ends here. 
Please view slides 31 (this one) through 35 offline before next class (Tue 11/29).  



JJJB +==×∇ 0total0 )(µµ M

MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

M×−∇=MJJM =   

external current
B: total effect of external & magnetization currents; felt by probe current.
H: allows us to consider external current only, with magnetization effects lumped into 
materials parameters. B = µ 0H + µ 0M

MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

H×∇J =   
)(0 MH +×∇= µ

Compare with dielectric in external electric field:

E: total effect of external & polarization charges; felt by probe charge.
D: allows us to consider external charge only, with polarization effects 
lumped into materials parameters. ε0E = D − P

P⋅−∇=Pρ𝜀𝜀0𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌 + 𝜌𝜌𝑃𝑃

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧
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MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

M×−∇=MJJM =   

external current
B: total effect of external & magnetization currents; felt by probe current.
H: allows us to consider external current only, with magnetization effects lumped into 
materials parameters. B = µ 0H + µ 0M

MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

H×∇J =   
)(0 MH +×∇= µ

HM mχ=

H×∇+= )1(0 mχµ

ρεχε =⋅∇≡+⋅∇ DE)( 00 e

Compare with dielectric in external electric field:

E: total effect of external & polarization charges; felt by probe charge.
D: allows us to consider external charge only, with polarization effects 
lumped into materials parameters. ε0E = D − P

P⋅−∇=Pρ𝜀𝜀0𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌 + 𝜌𝜌𝑃𝑃 P = χeε0E,

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧



JJJB +==×∇ 0total0 )(µµ M

MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

M×−∇=MJJM =   

external current
B: total effect of external & magnetization currents; felt by probe current.
H: allows us to consider external current only, with magnetization effects lumped into 
materials parameters. B = µ 0H + µ 0M

MJJJJB ×∇+=+==×∇ 000total0 )( µµµµ M

H×∇J =   
)(0 MH +×∇= µ

HM mχ=

H×∇+= )1(0 mχµ HH ×∇≡×∇≡ µµµ r0 , where rm µµχµµ 00 )1( ≡+≡
B = µH = µrµ 0H = (1 +  χm)µ 0H

ρεχε =⋅∇≡+⋅∇ DE)( 00 e ,
where re εεχεε 00 )1( ≡+≡ , EED εεε ≡≡ r0

Compare with dielectric in external electric field:

E: total effect of external & polarization charges; felt by probe charge.
D: allows us to consider external charge only, with polarization effects 
lumped into materials parameters. ε0E = D − P

P⋅−∇=Pρ𝜀𝜀0𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌 + 𝜌𝜌𝑃𝑃 P = χeε0E,

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆

�𝐧𝐧



One Way to Draw Analogy

P⋅−∇=Pρ
polarization charge

M×−∇=MJJM =   
magnetization currentpolarization magnetization

ε0EP = −P
polarization field No equivalence, but let’s define field due to magnetization

BM = µ 0M (and Bext = µ 0H)

E = Eext + EPTotal field B = Bext + BM = µ 0H + µ 0M

𝜀𝜀0 𝛁𝛁 � 𝐄𝐄ext + 𝛁𝛁 � 𝐄𝐄P = 𝜌𝜌 + 𝜌𝜌𝑃𝑃 𝜇𝜇0𝛁𝛁 × 𝐇𝐇 + 𝜇𝜇0𝛁𝛁 × 𝐌𝐌 = 𝜇𝜇0𝐉𝐉 + 𝜇𝜇0𝐉𝐉𝑀𝑀
external charge𝜀𝜀0𝛁𝛁 � 𝐄𝐄ext = 𝜌𝜌 𝜇𝜇0𝛁𝛁 × 𝐇𝐇 = 𝜇𝜇0𝐉𝐉

external current

𝜀𝜀0 𝛁𝛁 � 𝐄𝐄 − 𝛁𝛁 � 𝐄𝐄P = 𝜌𝜌
ε0EP = −P

𝜀𝜀0𝛁𝛁 � 𝐄𝐄 + 𝛁𝛁 � 𝐏𝐏 = 𝜌𝜌
𝜀𝜀0𝐄𝐄 + 𝐏𝐏 = 𝐃𝐃

⟹

⟹ ⟹ 𝛁𝛁 � 𝐃𝐃 = 𝜌𝜌

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇0𝛁𝛁 × 𝐇𝐇 + 𝜇𝜇0𝛁𝛁 × 𝐌𝐌
HM mχ=

rm µµχµµ 00 )1( ≡+≡

𝛁𝛁 × 𝐁𝐁 = 𝜇𝜇𝐉𝐉⟹

𝛁𝛁 × 𝐇𝐇 = 𝐉𝐉

P = χeε0E, re εεχεε 00 )1( ≡+≡ 𝜀𝜀𝛁𝛁 � 𝐄𝐄 = 𝜌𝜌⟹

Side Notes

H
M

H
solenoid

(external, applied)

EP

(total field)
Eext

𝐃𝐃 � �𝐧𝐧 = 𝜌𝜌𝑆𝑆
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Another Way to Draw AnalogySide Notes

In the context of circuit components, it makes 
sense to consider D as corresponding to B and 
E to H due to mathematical relations. 

𝑑𝑑 ∝ 𝑄𝑄, 𝐷𝐷 ∝ 𝑑𝑑 = ∫ 𝐼𝐼𝑑𝑑𝑡𝑡, 𝑄𝑄 & 𝐼𝐼 are measured. 𝐻𝐻 ∝ 𝐼𝐼 , 𝐵𝐵 ∝ 𝛷𝛷 = ∫𝑄𝑄𝑑𝑑𝑡𝑡, 𝐼𝐼 & 𝑄𝑄 are measured.

𝐷𝐷 = 𝜌𝜌𝑆𝑆 = 𝑑𝑑/𝐴𝐴Parallel-plate

𝑑𝑑 = �𝐃𝐃 � d𝐒𝐒General
𝐵𝐵 = 𝛷𝛷/𝐴𝐴Solenoid

𝛷𝛷 = �𝐁𝐁 � d𝐒𝐒General

B = µ 0H + µ 0M = µ 0H + χmµ 0M = µ H 
HM mχ=P = χeε0E

rm µµχµµ 00 )1( ≡+≡
D = ε0E + P = ε0E + χeε 0E = ε E 

re εεχεε 00 )1( ≡+≡

𝐼𝐼 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 𝑑𝑑 = 𝐶𝐶𝑄𝑄 = �𝐼𝐼𝑑𝑑𝑡𝑡 𝑄𝑄 =

𝑑𝑑𝛷𝛷
𝑑𝑑𝑡𝑡 𝛷𝛷 = 𝐿𝐿𝐼𝐼 = �𝑄𝑄𝑑𝑑𝑡𝑡

Ferroelectric Ferromagnetic

DOI: 10.1016/j.polymer.2013.01.035
PHYS 122, UC Davis

𝑄𝑄

𝑑𝑑 = ∫ 𝐼𝐼𝑑𝑑𝑡𝑡

𝐼𝐼

𝛷𝛷 = ∫𝑄𝑄𝑑𝑑𝑡𝑡

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.polymer.2013.01.035?_sg%5B0%5D=MMWVJ-yyLovddODYPSL8rVG6DbumUCa9biQxhpfcr9xlLQznRVsgNOIaf7SPqtUutMRi1XUiUq4Xgwby8ORhHHRVWw.0bHBWryhqHQ7wM0MEkGMyoGHTLNn2B22I1SmgxQg1KEIxmBqF856FKgfvHZqWPpvm-FVB0396TpTPKZ1qQwBCQ


The magnetization M, however, may be parallel or 
anti-parallel to the external magnetic field H.

Dielectric polarization P always 
acts against external electric field.

H H

Paramagnetic:  χm > 0, µr = 1 +  χm > 1

Diamagnetic:  χm < 0, µr = 1 +  χm < 1
µr ≈ 1
µ ≈ µ0

Ferromagnetic: Not due to dipole-dipole interaction! 
µr >> 1, nonlinearity, hysteresis;
Spontaneous magnetization 
(w/o external field)

Paramagnetic Diamagnetic

Ferromagnetic

Intuitively, when all the magnetic 
moments have been aligned, M
can not be further increased.

saturation

External field removed, magnetic 
moments still aligned 
remnant/spontaneous 
magnetization

(external, applied)

EP

(total field)
Eext



The description we give here is phenomenological – no real understanding. 
The explanation of paramagnetism, diamagnetism, and ferromagnetism are 
beyond the scope of this course. 

Now that we have tried to give you a qualitative explanation of 
diamagnetism and paramagnetism, we must correct ourselves and 
say that it is not possible to understand the magnetic effects of 
materials in any honest way from the point of view of classical 
physics. Such magnetic effects are a completely quantum-
mechanical phenomenon.

It is, however, possible to make some phoney classical arguments 
and to get some idea of what is going on. 

-- Richar Feynman

Other scientists would say "heuristic"

In the following, we try to give you some not-too-phoney explanations. 



Paramagnetic:  χm > 0, µr = 1 +  χm > 1
Material contains atoms with permanent magnetic moments, 
which are lined up by external magnetic field.

H

Diamagnetic:  χm < 0, µr = 1 +  χm < 1
Exhibited by atoms without net permanent magnetic moments. 
Due to Larmor precession. Induced extra moment opposite to 
external magnetic field. H

If there is no net permanent magnetic moments, magnetic moments of electrons balance out.
But, for opposite m, we have the same ∆m, always opposite to B: diamagnetic.

Electrons orbit and spin, 
each having an angular 
momentum J, and thus a 
magnetic moment m ∝ −J.

For an intuitive, easy-to-understand, 
classical analogy of Lamor precession, see 
precession of a gyro/spin top:
https://en.wikipedia.org/wiki/Precession

Each m precesses around B due to torque T, 
just like a gyro (or spin top): Lamor precession. 
The presession gives additional angular 
momentum ∆J and thus additional moment ∆m.

All materials have diamagnetism. In paramagnetic materials, paramagnetism dominates.

FYI



Ferromagnetic: Magnetic moments line up themselves without external field.
Should not exist had it not been for quantum mechanics. 
Magnetic interaction among moments too weak even at 0.1 K temperature.

rm µµχµµ 00 )1( ≡+≡
B = µH = µrµ 0H = (1 +  χm)µ 0H

B: total effect of external & magnetization currents; felt by probe current.
H: allows us to consider external current only, with magnetization effects 
lumped into materials parameters χm, µr .

For most paramagnetic and diamagnetic materials: µr = 1 +  χm ≈ 1 for practical purposes. 
For ferromagnetic materials, µr is large.

Compare this with:
E: total effect of external & polarization charges; felt by probe charge.
D: allows us to consider external charge only, with polarization effects 
lumped into materials parameters χ, εr.  εr = 1+χ > 1, ε > ε0.

re εεχεε 00 )1( ≡+≡ EED εεε ≡≡ r0

εr = 1 for air. εr between 2 and 3 for plastics. εr = 3.9 for SiO2. εr ~ 10 or 
more for high-k dielectrics

External field due to 
external current

Total field

Notice the different “accounting” for magnetic and electric fields.

B = µ 0H + µ 0M is equivalent to ε0E = D − P or 𝐄𝐄 = 1
𝜀𝜀0
𝐃𝐃 − 1

𝜀𝜀0
𝐏𝐏.



Here is the coupling between two loops/coils
Feed a current to loop 1, which induces B1. 
Part of the flux, Φ12, goes through loop 2. 
B1 increases as I1 increases.  So does Φ12. 
The changing Φ12 induces an emf in loop 2.

Make sure you get the 
directions/polarities right.



Here is the coupling between two loops/coils
Feed a current to loop 1, which induces B1. 
Part of the flux, Φ12, goes through loop 2. 
B1 increases as I1 increases.  So does Φ12. 
The changing Φ12 induces an emf in loop 2.

Make sure you get the 
directions/polarities right.

Question: 
If I1 is sinusoidal, what is the phase 
difference between V2 and I1?



Here is the coupling between two loops/coils
Feed a current to loop 1, which induces B1. 
Part of the flux, Φ12, goes through loop 2. 
B1 increases as I1 increases.  So does Φ12. 
The changing Φ12 induces an emf in loop 2.

Similarly,

It is mathematically shown that 

Make sure you get the 
directions/polarities right.

More generally, a changing current induces an emf in a 
nearby circuit/conductor.

Question: 
If I1 is sinusoidal, what is the phase 
difference between V2 and I1?



What if we wind the two coils around a magnetic material with very high µ ? 
Recall that magnetic materials (µr  >> 1) confine the magnetic field. 

Say, µ = ∞. There will be no flux leakage. 
All magnetic flux Φ generated by coil 1 goes through coil 2. 

When applied a voltage V1, coil 1 has to develop an emf exactly countering it.  

The same Φ goes through coil 2. 

Make sure you get the directions/polarities right.

Notice that coil 1 is a load to the voltage source, 
while coil 2 is giving power to the load resistor. 

The input impedance of coil 1 is

By energy conservation,

(used for impedance matching for amplifiers)

What is this that we are talking about?



This is the ideal transformer.
Assuming µ = ∞ for the magnetic core. 

The input impedance of coil 1 is resistive. Actually, V1, V2, I1, and I2 are all in phase.  

Wait a minute, is this right?
Should the input impedance of coil 1 be inductive?
I1 depends on RL.  Given V1, Φ is determined.  This means that no matter what I1 is 
(depending on RL), we always have the same Φ.  But should Φ depend on I1?



This is the ideal transformer.
Assuming µ = ∞ for the magnetic core. 

The input impedance of coil 1 is resistive. Actually, V1, V2, I1, and I2 are all in phase.  

Wait a minute, is this right?
Should the input impedance of coil 1 be inductive?
I1 depends on RL.  Given V1, Φ is determined.  This means that no matter what I1 is 
(depending on RL), we always have the same Φ.  But should Φ depend on I1?

Hint:
• Keep in mind that we assume µ = ∞ for the magnetic core. (Ideal!)
• In absence of coil 2, what would be I1? What would be the input impedance of coil 1? 
• If RL is replaced with an open circuit, answer the above questions.
• Now, we have a finite RL. Therefore a finite I2, which induces a finite H field in the 

core. The corresponding B field is infinite since µ = ∞! But don’t worry. Figure out its 
direction. This H field will be exactly canceled by that generated by I1. N1I1 = N2I2.



Magnetic materials (µr  >> 1) confine the magnetic field 
Recall magnetic boundary conditions.

H1t = H2t

H2t = H1t

µ2 >> µ1

B = µH B2t >> B1t

http://www.encyclopedia-magnetica.com/doku.php/flux_fringing

Coil 
Magnetic core

Magnetic materials (µr  >> 1) also give you a lot more B field out of the same I
The clamp meter is a great tool to measure an AC current.

B = µH

SB d
t

⋅
∂
∂

∫emf = N

In general, a changing current induces an emf in a nearby 
circuit/conductor.

B field distribution

1: air
2: magnetic core material



Review textbook Sections 5.5, 5.7-3, 6-3.
Notice that we discuss topics in a different sequence than in the book, 
for better understanding.  Review the notes, think about the questions.  
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