Our discussion on dynamic electromagnetic field is incomplete.

An AC current induces a magnetic field, which is also AC and thus induces an AC electric field.

\[\oint H \cdot dI = \oint J \cdot dS = I \quad \nabla \times H = J \]

\[\oint E \cdot dI = - \int \frac{\partial B}{\partial t} \cdot dS \quad \nabla \times E = - \frac{\partial B}{\partial t} \]

This AC electric field induces an AC magnetic field.

This goes on and on…

Generalization: include a capacitor and consider the displacement current. The first step is then

\[\oint H \cdot dI = \oint \left(J + \frac{\partial D}{\partial t} \right) \cdot dS = I + \int \frac{\partial D}{\partial t} \cdot dS \]

\[\nabla \times H = J + \frac{\partial D}{\partial t} \]
For the inductor, the AC magnetic field inside the coil induces an AC electric field, responsible for the emf of the coil; this is how the inductor works.

\[\oint E \cdot dl = -\int \frac{\partial B}{\partial t} \cdot dS \quad \nabla \times E = -\frac{\partial B}{\partial t} \]

This AC electric field in turn induces an AC magnetic field.

\[\oint H \cdot dl = \int \frac{\partial D}{\partial t} \cdot dS \quad \nabla \times H = \frac{\partial D}{\partial t} \]

This AC magnetic field induces an AC electric field. This goes on and on…

So, in principle everything is an antenna. Not necessarily a good one.

In many situations we do not consider the “on and on” process, especially for low frequencies.

\[\frac{d}{dt} \sin \omega t = \omega \cos \omega t \quad \frac{d}{dt} \cos \omega t = -\omega \sin \omega t \]
For the inductor, the AC magnetic field inside the coil induces an AC electric field, responsible for the emf of the coil; this is how the inductor works.

\[\oint E \cdot dl = - \int \nabla \times B \cdot dS \quad \nabla \times E = - \frac{\partial B}{\partial t} \]

This AC electric field in turn induces an AC magnetic field.

\[\oint H \cdot dl = \int \frac{\partial D}{\partial t} \cdot dS \quad \nabla \times H = \frac{\partial D}{\partial t} \]

This AC magnetic field induces an AC electric field.

This goes on and on…

So, in principle everything is an antenna. Not necessarily a good one.

In many situations we do not consider the “on and on” process, especially for low frequencies.

Pay attention to direction of B. A missing or extra negative sign? No. Differentiate a sinusoidal twice, you get a negative sign.

\[\frac{d^2}{dt^2} \cos \omega t = -\omega^2 \cos \omega t \]
\[\frac{d^2}{dt^2} \sin \omega t = -\omega^2 \sin \omega t \]

\[\frac{d}{dt} \sin \omega t = \omega \cos \omega t \quad \frac{d}{dt} \cos \omega t = -\omega \sin \omega t \]
Consider again the capacitor with external circuit

\[\oint H \cdot dl = \oint (J + \frac{\partial D}{\partial t}) \cdot dS = I + \oint \frac{\partial D}{\partial t} \cdot dS \]

\[\nabla \times H = J + \frac{\partial D}{\partial t} \]

\[\oint E \cdot dl = -\oint \frac{\partial B}{\partial t} \cdot dS \]

\[\nabla \times E = -\frac{\partial B}{\partial t} \]

An AC electric field induces a magnetic field, which is also AC and thus induces an AC electric field.

Pay attention to direction of \(E \), which is in the same direction of the \(D \) in the capacitor. A missing or extra negative sign? No. Differentiate a sinusoidal twice, you get a negative sign.

But \(H \) always has a \(\pi/2 \) phase difference with \(D \). No matter how we draw the figure, we are correct only half of the time in terms of the relation between the \(D \) and \(H \) directions.

In the case of the wire, \(H \) is in phase with \(I \), and \(E \) has a \(\pi/2 \) phase difference with \(H \) and \(I \).

But the \(H \) field induced by \(E \) is in phase with the \(H \) field that induces it.

In the above case, \(D \) and \(I \) have a \(\pi/2 \) phase difference.
The “on and on” process is wave propagation.

Somehow start with a changing electric field E, say $E \propto \sin \omega t$

The changing electric field induces a magnetic field, $B \propto \frac{\partial E}{\partial t} \propto \cos \omega t$

$$\oint H \cdot dl = \int \frac{\partial D}{\partial t} \cdot dS \quad \nabla \times H = \frac{\partial D}{\partial t} \quad \mathbf{D} \equiv \varepsilon_0 \epsilon_r \mathbf{E} \equiv \varepsilon \mathbf{E} \quad \mathbf{B} = \mu \mathbf{H} = \mu_r \mu_0 \mathbf{H}$$

As the induced magnetic field is changing with time, it will in turn induce an electric field

$E \propto -\frac{\partial B}{\partial t} \propto \sin \omega t$

Notice that $\frac{d}{dt} \cos \omega t = -\omega \sin \omega t$

Differentiate a sinusoidal twice, you get a negative sign.

$\oint \mathbf{E} \cdot dl = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot dS \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

And on and on....

Just as the mechanical wave on a string.
Electromagnetic wave propagation is a consequence of dynamic electromagnetic fields, and is therefore ubiquitous.

Recall the transmission lines.

A transmission line is made of two “wires”, or two conductors.

Recall boundary conditions. Electric field lines start/end at conductor surfaces, where there is charge.

Local voltage $v(z)$ can be defined at location z. $v(z)$ is simply the integral of the E field from one conductor to the other.

Local current $i(z)$ can also be defined at location z. $i(z)$ is simply the loop integral of the H field around a wire.

The electromagnetic field between the two conductors is taken care of by a distributed circuit model:
The electromagnetic field between the two conductors is taken care of by a **distributed** circuit model:

From this circuit model, we derived two **formally identical** partial differential equations of voltage \(v(z) \) and current \(i(z) \) – the telegrapher’s equations:

\[
\begin{align*}
\frac{\partial^2 v}{\partial z^2} &= L'C' \frac{\partial^2 U}{\partial x^2}, \\
\frac{\partial^2 i}{\partial z^2} &= L'C' \frac{\partial^2 i}{\partial x^2}
\end{align*}
\]

Let \(\nu_p = \frac{1}{\sqrt{L'C'}} \), we have

\[
\frac{\partial^2 v}{\partial z^2} = \frac{1}{\nu_p^2} \frac{\partial^2 v}{\partial x^2}
\]

and formally identical equation of \(i(z) \):

\[
\frac{\partial^2 i}{\partial z^2} = \frac{1}{\nu_p^2} \frac{\partial^2 i}{\partial x^2}
\]

The solutions to these **wave equations** are voltage and current waves.

Voltage \(v(z) \sim E(z)D \)

distance
Transmission lines are waveguides. The two conductors confine the electromagnetic field, and therefore the wave propagate along the longitudinal direction.

There are other types of waveguides. In general, you do not need two conductors to guide an EM wave. A metal tube is a waveguide:

Here, you cannot define local voltages and currents. You may imagine a very coarse ray optics picture: metal walls are like mirrors. But this is not accurate. Ray optics breaks down when waveguide dimensions are comparable to the wavelength.

The electromagnetic wave also propagates in free space:
For waveguides that are not transmission lines and for free space, we cannot define even local voltages $v(z,t)$ and local currents $i(z,t)$.

We must resort to the “real” electromagnetic field theory.

By doing similar math (describing the coupling), we can work out similar wave equations of the fields.

Just a bit more complicated, since fields are vectors.
• **Project:** Due Thu 12/3/2020.

• **Project:** New GTA in charge: Abdel-Kareem (Abdel) Moadi, amoadi@vols.utk.edu. Contact Abdel if you have questions or need help.

• **Project:** About plotting phase vs. frequency and finding derivative of phase with regard to frequency. Phase may be wrapped within a range of 2π. Such wrapping results in discontinuities. For our purpose, do you want to the wrapping?

• **Project:** About maximum time step in transient simulation.
Now, we use the simplest case to illustrate the electromagnetic field theory of waves. To make the math simple, we assume infinitely large wave fronts (and source)

The wave fronts are parallel to the x-y plane. No variation with regard to x or y, thus one-dimensional (1D) problem – simple math.

Figure 7-5: Spatial variations of E and H at $t = 0$ for the plane wave of Example 7-1.
Actually it’s more like this:

\[
S_{\text{BE}} \delta t \partial -\partial = \oint \oint
\]

Thus there must be B field in y direction:

\[
\oint E \cdot dl = -\oint \frac{\partial B}{\partial t} \cdot dS
\]

Take-home messages:

The EM plane wave is a transverse wave.

\(E \perp H \).
We have the freedom to call the propagation direction \(z \).

We assume no variation with regard to \(x \) or \(y \).

\[
\frac{\partial}{\partial x} \rightarrow 0, \quad \frac{\partial}{\partial y} \rightarrow 0, \\
\nabla \rightarrow \hat{\mathbf{j}} \frac{\partial}{\partial z}, \quad \nabla^2 \rightarrow \frac{\partial^2}{\partial z^2}
\]

Now we prove that the EM plane wave is a transverse wave, i.e. \(\mathbf{E} \) and \(\mathbf{H} \) are parallel to the \(x-y \) plane.

\[
\oint \mathbf{H} \cdot d\mathbf{l} = \int \frac{\partial \mathbf{D}}{\partial t} \cdot dS \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}
\]

The changing electric field induces a magnetic field.

\[
\nabla \times \mathbf{H} = \hat{\mathbf{j}} \frac{\partial}{\partial z} \times (\hat{x} H_x + \hat{y} H_y + \hat{z} H_z) \\
= \hat{\mathbf{j}} \times \hat{x} \frac{\partial H_x}{\partial z} + \hat{\mathbf{j}} \times \hat{y} \frac{\partial H_y}{\partial z} \\
= \hat{y} \frac{\partial H_x}{\partial z} - \hat{x} \frac{\partial H_y}{\partial z}
\]

Thus there must be \(\mathbf{B} \) field in \(y \) direction.

Similarly, the integral of \(\mathbf{H} \) around the blue loop is not 0.

Thus there must be \(\mathbf{E} \) field in \(x \) direction.

\[
\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \quad \Rightarrow \quad \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial x}
\]
\[\nabla \times \vec{H} = \frac{\partial}{\partial z} \times (\hat{x}H_x + \hat{y}H_y + \hat{z}H_z) \]
\[= \hat{z} \times \hat{x} \frac{\partial H_x}{\partial z} + \hat{z} \times \hat{y} \frac{\partial H_y}{\partial z} \]
\[= \hat{y} \frac{\partial H_x}{\partial z} - \hat{x} \frac{\partial H_y}{\partial z} \]

Alternatively,
\[\nabla \times \vec{H} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 0 & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix} = \hat{x} (-\frac{\partial H_y}{\partial z}) - \hat{y} (-\frac{\partial H_x}{\partial z}) \]

Anyway, you see \(\nabla \times \vec{H} \) is in the \(x-y \) plane, i.e., \((\nabla \times \vec{H}) \cdot \hat{z} = 0 \), i.e., \(\nabla \times \vec{H} \perp \hat{z} \)

\[\nabla \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t} \Rightarrow \text{So is } \frac{\partial \vec{E}}{\partial t}, \text{ i.e.,} \]
\[\frac{\partial \vec{E}}{\partial t} \cdot \hat{z} = 0, \text{ i.e. } \frac{\partial \vec{E}}{\partial t} \perp \hat{z} \Rightarrow \]
\[\frac{\partial E_3}{\partial t} = 0 \Rightarrow E_3 = \text{Constant} \]

If there is \(E_z \), it does not change, therefore is not part of the wave, but just a DC background.
Therefore, plane wave $E(z,t)$ is a transverse wave.

The above is better visualized considering the integral form of the equation:

$$ \int \mathbf{H} \cdot d\mathbf{l} = \int \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S} \quad \Rightarrow $$

$$ \frac{\partial D_z}{\partial t} A = \int \mathbf{H}_{//} \cdot d\mathbf{l} = 0 $$

for any loop in the x-y plane, since $\mathbf{H}_{//}$ is constant for a plane wave.
Similarly, we can show $\mathbf{H}(z,t)$ is a transverse wave:

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot dS$$

$\mathbf{\nabla \times E} = -\frac{\partial \mathbf{B}}{\partial t}$

The changing magnetic field induces an electric field.

$$\mathbf{\nabla \times E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \quad \Rightarrow$$

$$\frac{\partial H_z}{\partial t} = 0 \quad \Rightarrow \quad H_z \text{ not part of wave.}$$

Better visualization using the integral form of the equation:

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot dS \quad \Rightarrow$$

$$\frac{\partial B_z}{\partial t} A = \oint \mathbf{E}_z \cdot d\mathbf{l} = 0$$

Now we have shown $\mathbf{E} \perp \hat{z}$ and $\mathbf{H} \perp \hat{z}$, i.e. the EM plane wave is a transverse wave.

Note: Not all EM waves are plane waves.

Figure 7-5: Spatial variations of \mathbf{E} and \mathbf{H} at $t = 0$ for the plane wave of Example 7-1.
We have yet to prove $\mathbf{E} \perp \mathbf{H}$.

Now that $\mathbf{E} \perp \hat{z}$ and $\mathbf{H} \perp \hat{z}$, We can call the direction of \mathbf{E} the x direction.

$$\mathbf{E} = \hat{x} E_x \equiv \hat{x} \mathbf{E},$$

We now have the freedom to drop the subscript x in E_x.

Then, \[
\frac{\partial \mathbf{E}}{\partial t} = \hat{x} \frac{\partial \mathbf{E}}{\partial t}
\]

We know that

(Ampere’s law) \[
\varepsilon \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} = -\hat{x} \frac{\partial H_y}{\partial z} + \hat{y} \frac{\partial H_x}{\partial z}
\]

And, \[
\varepsilon \frac{\partial \mathbf{E}}{\partial t} = \varepsilon \hat{x} \frac{\partial \mathbf{E}}{\partial t}
\]

\[
\therefore \frac{\partial H_x}{\partial z} = 0 \quad \Rightarrow \quad H_x = 0
\]

\[
\mathbf{H} = \hat{y} H_y \equiv \hat{y} \mathbf{H}
\]

\[
\mathbf{H} \perp \mathbf{E}
\]
Similarly, we can use $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ to get $H_x = 0$.

and the by-product

$$\frac{\partial E}{\partial y} = -\mu \frac{\partial H}{\partial t} \quad (2)$$

We now have the freedom to drop the subscript y in H_y.

Recall this picture:

$$\oint \vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot dS$$

$$-\frac{\partial B_y}{\partial t} A = \oint \vec{E} \cdot d\vec{l} \quad (2')$$

Loop in x-z plane as shown

Thus there must be B field in y direction:

Once again, better visualization using the integral form of the equation.

Question: How do you relate Eq. $(2')$ to (2)?

Hint: Consider $B = \mu H$ and $A = \Delta z \Delta l$, $\oint \vec{E} \cdot d\vec{l} = (\partial E/\partial z) \Delta z \Delta l$.
Now, we make use of the two “by-product” equations to derive the wave equation.

\begin{align*}
(1): \quad \epsilon \frac{\partial^2 E}{\partial t^2} &= - \frac{\partial H}{\partial z} \quad \Rightarrow \quad \begin{cases}
\epsilon \frac{\partial^2 E}{\partial t^2} &= - \frac{\partial H}{\partial z} \\
\epsilon \frac{\partial^2 H}{\partial t \partial z} &= - \frac{\partial^2 E}{\partial z^2}
\end{cases} \\
(2): \quad \mu \frac{\partial^2 H}{\partial t^2} &= - \frac{\partial E}{\partial z} \quad \Rightarrow \quad \begin{cases}
\mu \frac{\partial^2 H}{\partial t^2} &= - \frac{\partial E}{\partial z} \\
\mu \frac{\partial^2 E}{\partial t \partial z} &= - \frac{\partial^2 H}{\partial z^2}
\end{cases}
\end{align*}

\(\Rightarrow\quad \frac{\partial^2 E}{\partial x^2} = \frac{1}{\epsilon \mu} \frac{\partial^2 E}{\partial z^2} \quad \equiv \quad v_p^2 \frac{\partial^2 E}{\partial z^2} \quad (7)\)

\(\Rightarrow\quad \frac{\partial^2 H}{\partial x^2} = \frac{1}{\epsilon \mu} \frac{\partial^2 H}{\partial z^2} \quad \equiv \quad v_p^2 \frac{\partial^2 H}{\partial z^2} \quad (8)\)

Re-write (7) & (8):

We have the freedom to drop the subscripts.

Two formally identical wave equations. Review along with and compare with the telegrapher’s equation (see next slide, duplicate from an old set).

Refractive index
An old slide about the transmission line: the telegrapher’s equation

Partial differential equations

Do these 2 equations look familiar to you?
What are they?

Let \(v_p = \frac{1}{\sqrt{L'C'}} \), we have

\[
\frac{\partial^2 v}{\partial z^2} = \frac{1}{v_p^2} \frac{\partial^2 v}{\partial x^2}
\]

\(v = f(v_p t - z) \) is the general solution to this equation.

Do it on your own: verify this.
Recall that for the telegrapher’s equation
\[
\frac{\partial^2 v}{\partial z^2} = \frac{1}{v_p^2} \frac{\partial^2 v}{\partial t^2}
\]

\(v = f(v_p t - z) \) is a general solution to this equation. Here, \(f(\) \) is an arbitrary function.

\[
\begin{align*}
\text{Snapshot at } t &= t_0 \\
\text{Waveform at } z &= z_0
\end{align*}
\]

What is the other general solution?

Similarly, for the wave equations of \(E \) and \(H \),
\[
\frac{\partial^2 E_x}{\partial z^2} = \frac{1}{v_p^2} \frac{\partial^2 E_x}{\partial t^2}, \quad \frac{\partial^2 H_y}{\partial z^2} = \frac{1}{v_p^2} \frac{\partial^2 H_y}{\partial t^2}
\]

\(E \) and \(H \) each has a general solution in the form \(f(v_p t - z) \).
\[\frac{\partial^2 E_x}{\partial z^2} = \frac{1}{\nu_p^2} \frac{\partial^2 E_x}{\partial t^2}, \quad \frac{\partial^2 H_y}{\partial z^2} = \frac{1}{\nu_p^2} \frac{\partial^2 H_y}{\partial t^2} \]

\(E \) and \(H \) each has a general solution in the form \(f(v_p t - z) \): waves propagating towards the \(+z\).

There are, of course, waves propagating towards the \(-z\): another general solution \(f(v_p t + z) \).

Next, we seek time-harmonic special solutions in the form of

\[E_x(z, t) = \Re \left[\tilde{E}_x(z) e^{j\omega t} \right] \]

as we did with transmission lines.

What is the function \(f \) for this kind of special solution?

Let \(\tilde{E}_x(z) = \left| \tilde{E}_x(z) \right| e^{j\phi(z)} \)

\[E_x(z, t) = ??? \]

Tue 11/17/2020 class ends here.
\[E_x(z, t) = \Re \left[\tilde{E}_x(z) e^{j\omega t} \right] \]

where
\[\tilde{E}_x(z) = |E_x(z)| e^{j\phi(z)} \]

\[\Rightarrow E_x(z, t) = \Re \left[\tilde{E}_x(z) e^{j\omega t} \right] = |E_x(z)| \cos[\omega t + \phi(z)] \]
Convert ordinary differential equations to algebraic equations, and partial differential equations to ordinary differential equations.

\[E_x(\vec{z},t) = Re \left[E_x(\vec{z}) e^{j\omega t} \right] \]

\[\frac{\partial}{\partial x} \rightarrow j\omega \]
\[\frac{\partial^2}{\partial x^2} = -\omega^2 \]

\[\frac{\partial^2 E_x}{\partial z^2} = \frac{1}{v_p^2} \frac{\partial^2 E_x}{\partial t^2} \]
\[\implies \quad \frac{d^2}{dz^2} \tilde{E}_x = -\frac{1}{v_p^2} \omega^2 \tilde{E}_x \]

Wave vector, equivalent to propagation constant \(\beta \).
Will explain why it’s called the wave vector.

Let \(k = \frac{\omega}{v_p} \)
\[k = \frac{\omega}{v_p} = \omega \sqrt{\varepsilon \mu} \]

\[\implies \quad \frac{d^2}{dz^2} \tilde{E}_x = -k^2 \tilde{E}_x \]

This is the same equation as we solved for the voltage or current of the transmission line. Therefore the same solution:

\[\tilde{E}_x = E_{x_0} e^{-j k z} + E_{x_0} e^{j k z} \]

What does this mean?
\[\tilde{E}_x = E_{x_0} e^{-j k z} + E_{x_0} e^{j k z} \]

What does this mean?

Consider one of these two solutions

Recall that we defined

Thus,

Consider

Then,
Consider one of these two solutions
\[\tilde{E}_x = E_{x_0} e^{-j k z} + E_{x_0} e^{j k z} \]

where
\[E_{x_0}^+ = |E_{x_0}^+| e^{j \phi_0^+} \]

Recall that we defined
\[\tilde{E}_x(z) = \left| \tilde{E}_x(z) \right| e^{j \phi(z)} \]

Thus,
\[\left| \tilde{E}_x(z) \right| = \left| E_{x_0}^+ \right| \]
and
\[\phi(z) = -k z + \phi_0^+ \]

Consider
\[E_x(z, t) = \Re \left[\tilde{E}_x(z) e^{j \omega t} \right] \]

Then,
\[E_x(z, t) = \left| E_{x_0}^+ \right| \cos[\omega t - k z + \phi_0^+] \]

Real amplitude

Complex amplitude
Complex amplitudes

What is the corresponding $\mathbf{E}(z,t)$?

This is two waves, characterized by k and $-k$ along the z axis.

Side note (will revisit later)

More generally, a wave can propagate in any direction, and can be characterized by a vector \mathbf{k} in the propagation direction. Thus the name wave vector.

The directions of \mathbf{E}, \mathbf{H}, and \mathbf{k} follow this right hand rule.

$$\mathbf{E}(\mathbf{r}, t) = |\mathbf{E}_0(\mathbf{k})| \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0(\mathbf{k}))$$

$$\mathbf{E}(\mathbf{k}) = \mathbf{E}_0(\mathbf{k}) e^{-\mathbf{k} \cdot \mathbf{r} + \phi_0(\mathbf{k})}$$

$r = x\hat{x} + y\hat{y} + z\hat{z}$

$k \cdot r = k_x x + k_y y + k_z z$
Let’s consider a wave propagating in one direction, as we did with transmission lines.

\[\vec{E}_x = E_{x_0}^+ e^{-j k z} \]

\[\vec{E}(z, t) = \text{Re} \left[\hat{x} E_{x_0}^+ e^{j (\omega t - k z)} \right] \]

\[\vec{E}(z, t) = \hat{x} \left| E_{x_0}^+ \right| \cos (\omega t - k z + \phi_0) \]

Before we go further, let’s get the notations right:
physical quantities vs. phasors, scalars vs. vectors

\[\vec{E}(z) = \hat{x} E_{x_0}^+ e^{-j k z} \]
\[\vec{E}_x (z) = E_{x_0}^+ e^{-j k z} \]
\[\vec{E}(z, t) = \hat{x} \left| E_{x_0}^+ \right| \cos (\omega t - k z + \phi_0) \]
\[E_x (z, t) = \left| E_{x_0}^+ \right| \cos (\omega t - k z + \phi_0) \]

Phasors are functions of \(z \) only.

Of course, the solution for magnetic field \(H \) is formally the same.

\[\vec{H}_y = H_{y_0}^+ e^{-j k z} \]
Recall that for the wave in one direction along a transmission line there is a relation between the voltage and current.

Similarly, there is also a definitive relation between E and H.

\[\nabla \times \hat{H} = \varepsilon \frac{\partial E}{\partial t} \]
\[\nabla \times \hat{H} = -\hat{x} \frac{\partial H_y}{\partial z} \]

\[-\frac{\partial H_y}{\partial z} = \varepsilon \frac{\partial E}{\partial t} = \hat{x} \varepsilon \frac{\partial E_x}{\partial t} \]

Recall Eq. (1) we used earlier to arrive at the wave equation

\[-\frac{\partial H_y}{\partial z} = \varepsilon \frac{\partial E_x}{\partial t} \quad (1) \]

\[H_y = H_y^0 e^{-j k z} \Rightarrow \frac{\partial H_y}{\partial z} = -j k \]

\[j k H_y^0 e^{-j k z} = \varepsilon j \omega E_x^0 e^{-j k z} \]

\[\frac{E_x^0}{H_y^0} = \frac{k}{\varepsilon \omega} = \frac{1}{\varepsilon \nu_p} = \frac{\sqrt{\varepsilon \mu}}{\varepsilon} = \sqrt{\frac{\mu}{\varepsilon}} \]

(Recall that $\nu_p = \frac{1}{\sqrt{\varepsilon \mu}}$)
\[\frac{E_{x_0}^+}{H_{y_0}^+} = \frac{k}{\varepsilon \omega} = \frac{1}{\varepsilon \nu_p} = \frac{\sqrt{\varepsilon \mu}}{\varepsilon} = \sqrt{\frac{\mu}{\varepsilon}} \]

(Recall that \(\nu_p = \frac{1}{\sqrt{\varepsilon \mu}} \))

Notice that \(E_{x_0}^+ \) and \(H_{y_0}^+ \) are “complex amplitude” containing the phase.

\[\frac{E_{x_0}^+}{H_{y_0}^+} \text{ is real} \quad \Rightarrow \quad E_x(z,t) \& H_y(z,t) \text{ are always in phase.} \]

(for the lossless case; will talk about the lossy case)

And, their ratio is a constant:

\[\frac{E(z,t)}{H(z,t)} = \sqrt{\frac{\mu}{\varepsilon}} \equiv \eta \]

wave impedance

just as in transmission lines:

\[\frac{\nu(z,t)}{i(z,t)} = \Xi_0 \]

characteristic impedance

Both are for a traveling wave going in one direction.
For a visual picture, again look at Figure 7-5 in the textbook:

Notice that the wave impedance has the dimension of impedance:

$$\eta = \frac{E}{H}$$

$$\frac{V/m}{A/m} = \frac{V}{A} = \Omega$$

Another way to remember this relation:

$$\frac{E}{B} = \frac{E}{\mu H} = \frac{i}{\mu \sqrt{\varepsilon}} = \frac{1}{\sqrt{\varepsilon \mu}} = \nu_p = \frac{c}{n}$$

Therefore:

$$E = \nu_p B$$

$$\sqrt{n} = \frac{1}{\sqrt{\varepsilon_r \mu_r}} = \frac{1}{\sqrt{\varepsilon_r}}$$

$$n = \sqrt{\varepsilon_r \mu_r} = \sqrt{\varepsilon_r}$$

(for non-magnetic materials, $\mu_r = 1$)
In free space,
\[\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \ \Omega \]
\[\nu_0 = c \]
\[\vec{E} = c \vec{B} \]

In a medium,
\[\eta = \sqrt{\frac{\mu_r}{\varepsilon_r}} \eta_0 = \sqrt{\frac{1}{\varepsilon_r}} \eta_0 \]
(for non-magnetic materials, \(\mu_r = 1 \))

The wave impedance is the intrinsic impedance of the medium, similar to the characteristic impedance of the transmission line.

Mismatch \(\Rightarrow \) reflection at interface between media

In microwave engineering, we talk about wave impedance. In optics, we talk about refractive index.

\[\sqrt{n} = \frac{1}{\sqrt{\varepsilon_r \mu_r}} = \frac{1}{\sqrt{\varepsilon_r}} \]
(for non-magnetic materials, \(\mu_r = 1 \))
Now you see the relation between wave impedance and refractive index.

\[\eta = \sqrt{\frac{\mu_r}{\varepsilon_r}} \eta_0 = \sqrt{\frac{1}{\varepsilon_r}} \eta_0 \]

\[\sqrt{n} = \frac{1}{\sqrt{\varepsilon_r \mu_r}} = \frac{1}{\sqrt{\varepsilon_r}} \]

\[n = \sqrt{\varepsilon_r \mu_r} = \sqrt{\varepsilon_r} \]

\[\eta = \frac{1}{n} \eta_0 \]

(for non-magnetic materials, \(\mu_r = 1 \))

Mismatch \(\Rightarrow \) reflection at interface between media

The relation between directions of \(\mathbf{E} \), \(\mathbf{H} \), and \(\mathbf{k} \) is independent of the coordinate system. \(\mathbf{k} \) does not have to be in the \(z \) direction.

Now we also know the ratios between them:

\[\frac{\mathbf{E}(3, \lambda)}{\mathbf{H}(3, \lambda)} = \sqrt{\frac{\mu}{\varepsilon}} = \eta \]

You can use these equations in the textbook to remember these relations:

\[\mathbf{H} = \frac{1}{\eta} \mathbf{k} \times \mathbf{E} \]

\[\mathbf{E} = -\eta \mathbf{k} \times \mathbf{H} \]

But I find it easier to just remember the right hand rule for directions and the \(E/H \) ratio being the wave impedance.
We explained why we study time-harmonic waves in transmission lines.

The concept of Fourier transform also applies to the space domain and the “k domain”.

k is the spatial equivalent of ω.

While time is 1D, space is 3D. \mathbf{k} is a vector.

In general, any arbitrary wave can be viewed as a superposition of time-harmonic plane waves of various frequencies (wavelengths) propagating in various directions.

(see next page for general plane wave in 3D)

Another reason to study plane waves: they are a good approximation in many cases, e.g., sunlight (various wavelengths), laser beam.
Generally, a time-harmonic plane wave can propagate in any direction, and can be characterized by a vector \mathbf{k} in the propagation direction. Thus the name wave vector.

The directions of \mathbf{E}, \mathbf{H}, and \mathbf{k} follow this right hand rule.

\[
\mathbf{E}(\mathbf{r}, t) = |\mathbf{E}_0(\mathbf{k})| \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0(\mathbf{k}))
\]

\[
\hat{\mathbf{E}}(\mathbf{k}) = \mathbf{E}_0(\mathbf{k}) e^{-\mathbf{k} \cdot \mathbf{r} + \phi_0(\mathbf{k})}
\]

$\mathbf{r} = x\hat{x} + y\hat{y} + z\hat{z}$

$\mathbf{k} \cdot \mathbf{r} = k_x x + k_y y + k_z z$
This familiar picture is the relation between E, H, and k in a lossless medium. It does not apply to all media.

Unlike the textbook, we discuss this simplest case first, and then move on to the more complicated lossy case.

Review these notes, and the introduction of Chapter 7, then Section 7-2. (The general case in Section 7-1 will be discussed next.)

Do Homework 12 Problems 1, 2.

Recall that v and i are not in phase in a lossy transmission line.

Also recall that in the Introduction we showed this (unfamiliar) picture, where E and H of a plane wave are not in phase in a lossy medium.

What causes loss?
Any finite conductivity leads to loss.

For AC, a closed circuit is not necessary. Damping to dipole oscillation causes loss. (Bound electrons)

The wave in a lossy medium loses a certain percentage of its energy per distance propagated, and therefore decays. \textbf{In what trend?}

\begin{align*}
\text{Lossless} & \hspace{2cm} \text{Lossy} \\
\nabla \times \vec{E} &= -\mu \frac{\partial \vec{H}}{\partial t} & \nabla \times \vec{E} &= -\mu \frac{\partial \vec{H}}{\partial t} \\
\nabla \times \vec{H} &= \varepsilon \frac{\partial \vec{E}}{\partial t} & \nabla \times \vec{H} &= \varepsilon \frac{\partial \vec{E}}{\partial t} \\
\frac{\partial}{\partial t} \rightarrow j \omega & \quad \nabla \times \vec{H} = j \omega \varepsilon \vec{E} & \quad \nabla \times \vec{H} = (\sigma + j \omega \varepsilon) \vec{E} \\
\n\n\text{Left side gains factor } j \text{ due to } & \quad \sigma = -jk \\
\text{Therefore } H \text{ & } E \text{ are in phase.}
\end{align*}

No Change. In this course we ignore magnetic loss even when considering lossy media.

Real current plus displacement current

Displacement current has a $\pi/2$ phase difference with \vec{H} (the factor j), while real current in phase with \vec{H}.

Any finite conductivity leads to loss.

For AC, a closed circuit is not necessary. Damping to dipole oscillation causes loss. (Bound electrons)

The wave in a lossy medium loses a certain percentage of its energy per distance propagated, and therefore decays. In what trend?

Lossless

\[
\begin{align*}
\nabla \times \vec{E} &= -\mu \frac{\partial \vec{H}}{\partial t} \\
\nabla \times \vec{H} &= \varepsilon \frac{\partial \vec{E}}{\partial t}
\end{align*}
\]

\[
\frac{\partial}{\partial t} \rightarrow j\omega
\]

Lossy

\[
\begin{align*}
\nabla \times \vec{E} &= -\mu \frac{\partial \vec{H}}{\partial t} \\
\nabla \times \vec{H} &= \varepsilon \frac{\partial \vec{E}}{\partial t} \\
\frac{\partial}{\partial t} &= j\omega \vec{E} \\
\vec{J} &= \sigma \vec{E}
\end{align*}
\]

Displacement current has a \(\pi/2 \) phase difference with \(\vec{H} \) (the factor \(j \)), while real current in phase with \(\vec{H} \).

Replace \(\varepsilon \) with \(\varepsilon_c \), and you get the lossy case. Everything is “formally” the same. Just keep in mind that \(\varepsilon_c \) is complex.
Lossless

\[
\frac{d^2 \widetilde{E}_x}{dz^2} = -k^2 \widetilde{E}_x
\]

\[k = \frac{\omega}{v_p} = \omega \sqrt{\varepsilon \mu} \]

\[k^2 = \omega^2 \varepsilon \mu\]

\[\widetilde{E}_x = E_{x_0} e^{-jkz} + E_{x_0} e^{jkz}\]

Lossy

\[
\frac{d^2 \widetilde{E}_x}{dz^2} - \gamma^2 \widetilde{E}_x = 0
\]

\[\gamma \equiv j\omega \sqrt{\mu \varepsilon_c} \]

\[\gamma^2 = -\omega^2 \mu \varepsilon_c\]

\[\gamma\] is the equivalent of \(jk\); \(\gamma^2\) the equivalent of \(-k^2\)

\[\widetilde{E}_x = E_{x_0} e^{-\gamma z} + E_{x_0} e^{\gamma z}\]

For the lossy case, let \(\gamma = \alpha + j \beta\)

\[
\widetilde{E}_x = E_{x_0} e^{-\gamma z} + E_{x_0} e^{\gamma z}
\]

\[\Rightarrow \]

\[
\widetilde{E}_x = E_{x_0} e^{-\alpha z} e^{-j\beta z} + E_{x_0} e^{\alpha z} e^{j\beta z}
\]

What do these two terms mean?
Consider one of these two solutions:

\[\tilde{E}_x = E_{x_0} e^{-\kappa z} e^{-j \beta z} \]

Recall that we defined

\[\tilde{E}_x(z) = \left| E_x(z) \right| e^{j \phi(z)} \]

Thus,

\[\left| \tilde{E}_x(z) \right| = ??? \quad \phi(z) = ??? \]

Consider

\[E_x(z, t) = \text{Re} \left[\tilde{E}_x(z) e^{j \omega t} \right] \]

Then,

\[E_x(z, t) = ??? \]
Now we look at the wave propagating in one direction:

Recall the wave impedance

$$\frac{E_x^+}{H_y^+} = \frac{k}{\varepsilon \omega} = \frac{\sqrt{\varepsilon \mu}}{\varepsilon \omega} = \frac{\sqrt{\mu}}{\varepsilon}$$

μ and ε are both real and positive \Rightarrow

$$\frac{E_x^+}{H_y^+} \text{ is real} \Rightarrow E_x(z, t) \& H_y(z, t) \text{ are in phase in the lossless case.}$$

In a lossy medium, with ε_c replacing ε,

$E_x(z, t) \& H_y(z, t) \text{ are not in phase.}$

Keep in mind that ε_c is complex.

Recall the characteristic impedances of lossless and lossy transmission lines.

Origin of the difference between lossless and lossy:

Displacement current (always present) is $\pi/2$ out of phase with E field.
A $\pi/2$ of phase shift from Faraday’s law.
Thus E & H in phase in lossless case.
Real current (only in lossy media) is in phase with E.
Thus E & H not in phase in lossy case.
We now relate the medium properties σ, μ, and ε to γ

$$\gamma = \alpha + j\beta \equiv j\omega\sqrt{\mu\varepsilon_c}$$

$$\varepsilon_c = \varepsilon - j\frac{\sigma}{\omega}$$

$$= j\omega\sqrt{\varepsilon\mu} - j\frac{\sigma\mu}{\omega}$$

$$= j\omega\sqrt{\varepsilon\mu} \sqrt{1 - j\frac{\sigma}{2\omega\varepsilon}}$$

$$\approx j\omega\sqrt{\varepsilon\mu} \left(1 - j\frac{\sigma}{2\omega\varepsilon}\right) = \omega\sqrt{\varepsilon\mu} \cdot \frac{\sigma}{2\omega\varepsilon} + j\omega\sqrt{\varepsilon\mu}$$

$$= \frac{\sigma}{2\sqrt{\varepsilon\mu}} + j\omega\sqrt{\varepsilon\mu}$$

\[\therefore \quad \alpha = \frac{\sigma}{2\sqrt{\varepsilon\mu}}, \quad \beta = \omega\sqrt{\varepsilon\mu}\]

\[\sigma \uparrow \Rightarrow \alpha \uparrow\]

Compare \(\beta = \omega\sqrt{\varepsilon\mu}\) Lossy
\[k = \omega\sqrt{\varepsilon\mu}\] Lossless
\[
\frac{E_{x_0}^+}{H_{y_0}^+} = \frac{k}{\varepsilon \omega} = \frac{\sqrt{\varepsilon \mu}}{\varepsilon} = \sqrt{\frac{\mu}{\varepsilon}}
\]

Since \(\varepsilon_c \) is complex, \(E_x(z, t) \) & \(H_y(z, t) \) are not in phase, with \(\varepsilon_c \) replacing \(\varepsilon \).

\(\varepsilon_c \equiv \varepsilon - j\frac{\sigma}{\omega} \)

In a lossy medium, what is the phase difference between \(E_x(z, t) \) & \(H_y(z, t) \)?

Review these notes, along with textbook Section 7-1.
Finish Homework 12.
Compare the \(E \) & \(H \) waves here with the \(v \) and \(i \) waves in transmission lines. By doing this, you will gain a good understanding of waves.
Take-home Messages

- Electromagnetic plane waves are transverse waves
 - Not all EM waves are transverse.
- \(\mathbf{E} \perp \mathbf{H} \)
- \(\mathbf{E} \perp \hat{k} \) and \(\mathbf{H} \perp \hat{k} \), \(\mathbf{k} \) being the wave vector representing the propagation direction
 \[
 \hat{k} = \omega \sqrt{\varepsilon \mu} \quad \text{in lossless media}
 \]
 This relation independent of choice of coordinate
- Constant ratio between \(\mathbf{E} \) and \(\mathbf{H} \): wave impedance
- Wave impedance mismatch results in reflection
- Wave impedance real in lossless media, thus \(\mathbf{E} \) and \(\mathbf{H} \) in phase
- Wave decays in lossy media; loss due to finite conductivity
- “Complex dielectric constant” used to treat loss; simple expression of decay constant and propagation constant for good insulators
- Due to complex dielectric constant (resulting from real current that is in phase with \(\mathbf{E} \)), wave impedance of a loss medium is complex
 - Thus \(\mathbf{E} \) and \(\mathbf{H} \) not in phase in a lossy medium.

Limitations: Our discussions limited to homogeneous, isotropic, dispersionless, and non-magnetic \((\mu_r = 1)\) media.
End of Semester

- Review all notes, listed textbook sections. Review homework
- Review the first ppt – Introduction
- Review the course contents as a whole, and relate to other subjects
- Strive to gain true understanding (necessary condition for an A in this course)
- Answer questions I raised in class but did not answer (all in notes)
- Finals: EM field theory (contents after Test 1) weighs much more, but there will be transmission line problems. Transmission line problems will not involve detailed work; they test your understanding of the most basic essence.
- Think about the Project. Get something out of it (beyond earning the points)

Thank you!