
Electromagnetic Waves
Our discussion on dynamic electromagnetic field so far is incomplete.
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An AC current induces a magnetic field H, 

Idd =⋅=⋅ ∫∫ SJlH JH =×∇
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Generalization: include a capacitor and consider the 
displacement current. The first step is then
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Electromagnetic Waves
Our discussion on dynamic electromagnetic field so far is incomplete.

I
H

E An AC current induces a magnetic field H, which is 
also AC and thus induces an AC electric field E.

Idd =⋅=⋅ ∫∫ SJlH JH =×∇
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Ampere’s law

We talked about an application of this.

Therefore, a wire is an inductor.

We can also measure the effect of the induced 
E field elsewhere.



Electromagnetic Waves
Our discussion on dynamic electromagnetic field so far is incomplete.

I
H

E An AC current induces a magnetic field H, which is 
also AC and thus induces an AC electric field E.

Idd =⋅=⋅ ∫∫ SJlH JH =×∇

The AC electric field E induces 
an AC magnetic field.

This goes on and on…
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Generalization: include a capacitor and consider the 
displacement current. The first step is then
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For the inductor, the AC magnetic field B inside the 
coil induces an AC electric field E, responsible for 
the emf of the coil; this is how the inductor works.

This AC electric field in turn induces an AC magnetic field.
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This AC magnetic field induces an AC electric field.  
This goes on and on… 

So, in principle everything is an antenna.  
Not necessarily a good one.

In many situations we do not consider 
the “on and on” process, especially for 
low frequencies.
𝑑𝑑
𝑑𝑑𝑡𝑡 sinω𝑡𝑡 = ω cosω𝑡𝑡

𝑑𝑑
𝑑𝑑𝑡𝑡

cosω𝑡𝑡 = −ω sinω𝑡𝑡
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For the inductor, the AC magnetic field B inside the 
coil induces an AC electric field E, responsible for 
the emf of the coil; this is how the inductor works.

This AC electric field in turn induces an AC magnetic field.
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This AC magnetic field induces an AC electric field.  
This goes on and on… 

So, in principle everything is an antenna.  
Not necessarily a good one.

In many situations we do not consider 
the “on and on” process, especially for 
low frequencies.
𝑑𝑑
𝑑𝑑𝑡𝑡 sinω𝑡𝑡 = ω cosω𝑡𝑡

𝑑𝑑
𝑑𝑑𝑡𝑡

cosω𝑡𝑡 = −ω sinω𝑡𝑡

Pay attention to direction of B. 
A missing or extra negative sign? 
No. Differentiate a sinusoidal 
twice, you get a negative sign.

𝑑𝑑2

𝑑𝑑𝑡𝑡2 cosω𝑡𝑡 = −ω2 cosω𝑡𝑡

𝑑𝑑2

𝑑𝑑𝑡𝑡2 sinω𝑡𝑡 = −ω2 sinω𝑡𝑡
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This neg sign and that in Faraday’s law cancel 
⇒ Induced B in phase w/ original B



Consider again the capacitor with external circuit
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Pay attention to direction of E, which is in 
the same direction of the D in the capacitor. 
A missing or extra negative sign? 
No. Differentiate a sinusoidal twice, you get 
a negative sign.
But H always has a π/2 phase difference with 
D. No matter how we draw the figure, we 
are correct only half of the time in terms of 
the relation between the D and H directions.
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D An AC electric field induces a magnetic field, which 
is also AC and thus induces an AC electric field.
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Idd =⋅=⋅ ∫∫ SJlH JH =×∇

In the case of the wire, H is in phase with I, and E has 
a π/2 phase difference with H and I.
But the H field induced by E is in phase with the H
field that induces it.

H

In the above case, D and I have a π/2 phase 
difference .

FYI



The “on and on” process is wave propagation.

Somehow start with a changing electric field E, say E ∝ sinωt

The changing electric field induces a magnetic field, B ∝ t
t
E ωcos∝
∂
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+ ∫ =×∇ H EED εεε ≡≡ r0 B = µH = µrµ 0H
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because , i.e. , and ,



The “on and on” process is wave propagation.

Somehow start with a changing electric field E, say E ∝ sinωt

The changing electric field induces a magnetic field, B ∝ t
t
E ωcos∝
∂
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As the induced magnetic field is changing with time, it will in turn induce an electric field

And on and on....
Just as the mechanical wave on a string.
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The “on and on” process is wave propagation.

Somehow start with a changing electric field E, say E ∝ sinωt

The changing electric field induces a magnetic field, B ∝ t
t
E ωcos∝
∂
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As the induced magnetic field is changing with time, it will in turn induce an electric field

And on and on....
Just as the mechanical wave on a string.

lH d =⋅∫ SD d
t
⋅

∂
∂

+ ∫ =×∇ H EED εεε ≡≡ r0 B = µH = µrµ 0H

t∂
∂

−=×∇
BESBlE d

t
d ⋅

∂
∂

−=⋅ ∫∫

E

B

E ∝ −
𝑑𝑑
𝑑𝑑𝑡𝑡 cosω𝑡𝑡 = −ω sinω𝑡𝑡Notice that

Negative signs cancel

π/2 phase 
difference

Differentiate a sinusoidal 
twice, you get a negative sign.

because , i.e. , and ,

because , i.e.
The negative signs from differentiating 
twice and from Faraday’s law cancel 
⇒ Induced fields in phase w/ induced 
fields at each point. 



Electromagnetic wave propagation is a consequence of dynamic electromagnetic fields, 
and is therefore ubiquitous. 

Recall the transmission lines. A transmission line is made of two 
“wires”, or two conductors.

Recall boundary conditions. 
Electric field lines start/end at 
conductor surfaces, where there is 
charge.

Local voltage 𝑣𝑣(z) can be defined 
at location z. 𝑣𝑣(z) is simply the 
integral of the E field from one 
conductor to the other.

Local current i(z) can also be defined at location z.  i(z) is 
simply the loop integral of the H field around a wire.

The electromagnetic field between the two conductors is taken 
care of by a distributed circuit model:



Voltage 𝑣𝑣(z) ~ E(z)D

The electromagnetic field between the two conductors is taken 
care of by a distributed circuit model:

From this circuit model, we derived two 
formally identical partial differential 
equations of voltage v(z) and current i(z) 
– the telegrapher’s equations:

Let , we have

and formally identical equation of i(z):

The solutions to these wave equations are voltage and current waves.

D

distance



Transmission lines are waveguides. 
The two conductors confine the 
electromagnetic field, and 
therefore the wave propagate along 
the longitudinal direction.

Here, you cannot define local voltages and currents. 
You may imagine a very coarse ray optics picture: metal walls 
are like mirrors. But this is not accurate. Ray optics breaks down 
when waveguide dimensions are comparable to the wavelength.

There are other types of waveguides.
In general, you do not need two 
conductors to guide an EM wave. 
A metal tube is a waveguide:

Transmission lines

Rectangular waveguide

The electromagnetic wave also propagates in free space:



For waveguides that are not transmission lines and for free space, 
we cannot define even local voltages v(z,t) and local currents i(z,t).  

Rectangular waveguide

EM wave in free space

We must resort to the “real” electromagnetic field theory.

𝑖𝑖 = 𝐶𝐶
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The changing magnetic field induces an electricfield.
The changing electric field induces a magnetic field.Changing voltage  current

Changing current  voltage

By doing similar math (describing the coupling), we can work out similar 
wave equations of the fields.
Just a bit more complicated, since fields are vectors.



Now, we use the simplest case to illustrate the electromagnetic field theory of waves.

To make the math simple, we assume infinitely large wave fronts (and source)

This picture: 
A finite source, 
more complicated.
(Not plane wave)

E
x

y

z

The wave fronts are parallel to the x-y plane.
No variation with regard to x or y, thus one-dimensional (1D) 
problem – simple math.

A familiar picture you have seen before

Plane wave

Lecture of Tue 11/22/2022 ends here. 
Please view review Test 1 & Test 2. 

E

H



Actually it’s more like this:
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Consider the integral of E along the rectangle loop.  There must be B field in y direction:

This is the big picture of 
plane waves.
See the formal math later.

Take-home messages:
The EM plane wave is a 
transverse wave.
E ⊥ H.

H
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Similarly, the integral of H around the blue loop is not 0. 
Thus there must be E field in x direction.  
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We have the freedom to call the propagation direction z.
We assume no variation with regard to x or y.

Now we prove that the EM plane wave is a transverse wave, 
i.e. E and H are parallel to the x-y plane.
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The changing electric field induces a magnetic field.

For better understanding, read the rigorous math off-line:
x

y

z



Alternatively,

Anyway, you see is in the x-y plane, i.e.,

If there is Ez, it does not change, therefore is not 
part of the wave, but just a DC background.

So is , i.e.,

Therefore, plane wave E(z,t) is a transverse wave.

lH d =⋅∫ SD d
t
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∂
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+ ∫
See next page for visualization 
in integral form.



Plane wave E(z,t) is a transverse wave.
Better visualized in the integral form. 
Simple argument: 
If there were 𝐷𝐷𝑧𝑧 ≠ 0, it must be independent 
on 𝑧𝑧. Simply, it cannot be part of the wave. 
More detailed:
Around any loop of area A in the x-y plane, 
the loop integral of H of a plane wave must 
be 0. 

lH d =⋅∫ SD d
t
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+ ∫
𝜕𝜕𝐷𝐷𝑧𝑧
𝜕𝜕𝑡𝑡 𝐴𝐴 = �𝐇𝐇 ⋅ d𝐥𝐥// = 0

Since the in-plane magnetic field H//
is constant in the x-y plane for a plane 
wave.

⇒

E

= 0
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Thus there must be 
B field in y direction.

Similarly, we can show H(z,t) is a transverse wave:
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Hz not part of wave.

Better visualization using the 
integral form of the equation:
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𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑡𝑡 𝐴𝐴 = �𝐄𝐄 ⋅ d𝐥𝐥// = 0

Now we have shown E ⊥ �𝒛𝒛 and H ⊥ �𝒛𝒛, i.e. 
the EM plane wave is a transverse wave.

Note: Not all EM waves are plane waves.

The changing magnetic field induces an electric field.
H



We have yet to prove E ⊥ H. 
Now that E ⊥ �𝒛𝒛 and H ⊥ �𝒛𝒛, We can call the direction of E the x direction.

We now have the freedom to drop the subscript x in Ex.

(Ampere’s law)

Again, read the rigorous math off-line:



Similarly, we can use to get

and the by-product

We now have the freedom to drop the subscript y in Hy.

Recall this picture:

SBlE d
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Thus there must be B field in y direction:
Once again, better visualization using the integral form of the equation.

−
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑡𝑡 𝐴𝐴 = �𝐄𝐄 ⋅ d𝐥𝐥

Loop in x-z plane as shown

How? Try to do it.

(2’)

Question: How do you relate Eq. (2’) to (2)?
Hint: Consider B = µH and A = ∆z∆l, ∮𝐄𝐄 ⋅ d𝐥𝐥 = (∂E/∂z)∆z∆l.

H

Again, visualization in integral form



Now, we make use of the two “by-product” equations to derive the wave equation.

Two formally identical wave equations.

Review along with and compare with 
the telegrapher’s equation (see next 
slide, duplicate from an old set).

We have the freedom to 
drop the subscripts.

(7)

(8)

Re-write (7) & (8):

Refractive index



Partial differential equations

Do these 2 equations look familiar to you?
What are they?

Let , we have

v = f (vpt−z) is the general solution to this equation.

Do it on your own: verify this.

An old slide about the transmission line: the telegrapher’s equation



𝑣𝑣 = f (𝑣𝑣pt−z) is a general solution to this equation. Here, f( ) is an arbitrary function.

Recall that for the telegrapher’s equation

Snapshot at t = t0

z

f (𝑣𝑣pt0 − z)

t

Waveform at z = z0

f (𝑣𝑣pt − z0)

What is the other general solution?

Similarly, for the wave equations of E and H, 

E and H each has a general solution in the form f (𝑣𝑣pt−z). 



E and H each has a general solution in the form f (𝑣𝑣pt−z): waves propagating towards the +z.

There are, of course, waves propagating towards the −z: another general solution f (𝑣𝑣pt+z).

Next, we seek time-harmonic special solutions in the form of

as we did with transmission lines.

What is the function f for this kind of special solution?

𝜙𝜙
Let

???

f (z−𝑣𝑣pt):



𝜙𝜙
where

= |�𝐸𝐸𝑥𝑥(𝑧𝑧)| cos[𝜔𝜔𝑡𝑡 + 𝜙𝜙 𝑧𝑧 ]

⇒



Convert ordinary differential equations to algebraic equations, and 
partial differential equations to ordinary differential equations. 

Wave vector, equivalent to 
propagation constant β.
Will explain why it’s called 
the wave vector. 

This is the same equation as we solved for the voltage or current of the transmission line.
Therefore the same solution:

What does this mean?



What does this mean?

Consider one of these two solutions

𝜙𝜙
Recall that we defined

Thus, = ??? = ???

Consider

???Then,

where 𝑒𝑒𝑗𝑗𝜙𝜙0+



Consider one of these two solutions

𝜙𝜙
Recall that we defined

Thus, = −𝑘𝑘𝑧𝑧 + 𝜙𝜙0+

Consider

Then,

Real amplitude

and

𝑒𝑒𝑗𝑗𝜙𝜙0+where

cos[𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑧𝑧 + 𝜙𝜙0+]

Complex amplitude

Real amplitude



Complex amplitudes What is the corresponding E(z,t)?

This is two waves, characterized by k and –k along the z axis.

More generally, a wave can propagate in any direction, and can be characterized by a 
vector k in the propagation direction.  Thus the name wave vector.

The directions of E, H, and k follow this right hand rule.

Side note (will revisit later)

r = x�𝐱𝐱 + y�𝐲𝐲 + z�𝐳𝐳
k⋅r = kxx + kyy + kzz

𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0 cos 𝜔𝜔𝑡𝑡 − 𝐤𝐤 ⋅ 𝐫𝐫 + 𝜙𝜙0 = �𝐄𝐄0𝐸𝐸0 cos 𝜔𝜔𝑡𝑡 − 𝐤𝐤 ⋅ 𝐫𝐫 + 𝜙𝜙0

�𝐄𝐄 𝐤𝐤 = 𝐄𝐄0𝑒𝑒𝑗𝑗𝜙𝜙0𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫 = �𝐄𝐄0 𝐸𝐸0𝑒𝑒𝑗𝑗𝜙𝜙0 𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫 = �𝐄𝐄0𝐸𝐸0𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫+𝑗𝑗𝜙𝜙0

Complex amplitude Real amplitude



Let’s consider a wave propagating in one direction, as we did with transmission lines.

Before we go further, let’s get the notations right: 
physical quantities vs. phasors, scalars vs. vectors

Phasors are functions of z only.

Of course, the solution for magnetic field H is formally the same.

+

+

+

+



Recall that for the wave in one direction along a transmission line 
there is a relation between the voltage and current. 

Similarly, there is also a definitive relation between E and H. 

Eq. (1) we used earlier in slide 22 to arrive at the wave equation

= −jk

Ampere’s law

i.e.

Insert
to left side of (1) and apply

Insert
to right side of (1) and apply



Notice that          and         are “complex amplitudes” containing phase information. 

is real are always in phase.

(for the lossless case; will talk about the lossy case)
And, their ratio is a constant: 

wave impedance

just as in transmission lines: characteristic impedance

Both are for a traveling wave going in one direction.

�𝐸𝐸𝑥𝑥(𝑧𝑧)
�𝐻𝐻𝑦𝑦(𝑧𝑧)

=

�𝐸𝐸𝑥𝑥(𝑧𝑧)
�𝐻𝐻𝑦𝑦(𝑧𝑧)

=



For a visual picture, again look at 
Figure 7-5 in the textbook

Notice that the wave impedance has the 
dimension of impedance:

Another way to remember this relation: 

(for non-magnetic materials, µr = 1)



Here, n is refractive index:

See slide 31; will revisit later

⟺



In free space,

(for non-magnetic materials, µr = 1)

In a medium,

The wave impedance of a medium is similar to the 
characteristic impedance of a transmission line.

Mismatch  reflection at interface between media

In microwave engineering, we talk about wave impedance.

In optics, we talk about refractive index.

(for non-magnetic materials, µr = 1)



Now you see the relation between wave impedance and refractive index.

(for non-magnetic materials, µr = 1)

Mismatch  reflection at interface between media

The relation between directions of E, H, and k is independent of 
the coordinate system.  k does not have to be in the z direction.

Now we also know the ratios between them:

You can use these equations in the textbook to remember these relations:

But I find it easier to just remember the right hand rule for directions 
and the E/H ratio being the wave impedance.

𝜂𝜂 =
1
𝑛𝑛
𝜂𝜂0



https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Bo
ok%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/7%3A_Quantum_Mechanics/7.2
%3A_The_Heisenberg_Uncertainty_Principle

We explained why we study time-harmonic 
waves in transmission lines.

The concept of Fourier transformation 
also applies to the space domain and 
the “k domain”.
k is the spatial equivalent of ω.

The peak of the wave packet 
(pulse envelope) is where all 
Fourier components happen 
to be in phase. 

Special case: 
various wavelengths, same propagation direction



This is where we paused on Thu 12/1/2022 
and resume on Tue 12/6.



https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Bo
ok%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/7%3A_Quantum_Mechanics/7.2
%3A_The_Heisenberg_Uncertainty_Principle

https://slideplayer.com/slide/4452808/

We explained why we study time-harmonic 
waves in transmission lines.

The concept of Fourier transformation 
also applies to the space domain and 
the “k domain”.
k is the spatial equivalent of ω.

While time is 1D, space is 3D.
k is a vector.

The peak of the wave packet 
(pulse envelope) is where all 
Fourier components happen 
to be in phase. 

Special case: 
various wavelengths, same propagation direction

Special case: same wavelength, 
various propagation directions





https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Bo
ok%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/7%3A_Quantum_Mechanics/7.2
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We explained why we study time-harmonic 
waves in transmission lines.

The concept of Fourier transformation 
also applies to the space domain and 
the “k domain”.
k is the spatial equivalent of ω.

While time is 1D, space is 3D.
k is a vector.

In general, any arbitrary wave can be viewed as a superposition of 
time-harmonic plane waves of various frequencies (wavelengths) 
propagating in various directions.

Another reason to study plane waves: they are a good approximation 
in many cases, e.g., sunlight (various wavelengths), laser beam.

(see next page for general plane wave in 3D)

The peak of the wave packet 
(pulse envelope) is where all 
Fourier components happen 
to be in phase. 

Special case: 
various wavelengths, same propagation direction

Special case: same wavelength, 
various propagation directions





Generally, a time-harmonic plane wave can propagate in any direction, and can be 
characterized by a vector k in the propagation direction.  Thus the name wave vector.

The directions of E, H, and k follow this right hand rule.

r = x�𝐱𝐱 + y�𝐲𝐲 + z�𝐳𝐳
k⋅r = kxx + kyy + kzz

𝐄𝐄 𝐫𝐫, 𝑡𝑡 = 𝐄𝐄0 cos 𝜔𝜔𝑡𝑡 − 𝐤𝐤 ⋅ 𝐫𝐫 + 𝜙𝜙0 = �𝐄𝐄0𝐸𝐸0 cos 𝜔𝜔𝑡𝑡 − 𝐤𝐤 ⋅ 𝐫𝐫 + 𝜙𝜙0

�𝐄𝐄 𝐤𝐤 = 𝐄𝐄0𝑒𝑒𝑗𝑗𝜙𝜙0𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫 = �𝐄𝐄0 𝐸𝐸0𝑒𝑒𝑗𝑗𝜙𝜙0 𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫 = �𝐄𝐄0𝐸𝐸0𝑒𝑒−𝑗𝑗𝐤𝐤⋅𝐫𝐫+𝑗𝑗𝜙𝜙0

Complex amplitude Real amplitude



This familiar picture is the relation 
between E, H, and k in a lossless 
medium.  It does not apply to all media.

Unlike the textbook, we discuss this 
simplest case first, and then move on to 
the more complicated lossy case.

Review these notes, and the introduction 
of Chapter 7, then Section 7-2.
(The general case in Section 7-1 will be 
discussed next.)
Do Homework 12 Problems 1, 2.





This familiar picture is the relation 
between E, H, and k in a lossless 
medium.  It does not apply to all media.

Unlike the textbook, we discuss this 
simplest case first, and then move on to 
the more complicated lossy case.

Review these notes, and the introduction 
of Chapter 7, then Section 7-2.
(The general case in Section 7-1 will be 
discussed next.)
Do Homework 12 Problems 1, 2.

Recall that 𝑣𝑣 and i are not in 
phase in a lossy transmission 
line.

Also recall that in the 
Introduction we showed this 
(unfamiliar) picture, where E
and H of a plane wave are not
in phase in a lossy medium.

What causes loss?







Any finite conductivity leads to loss.
For AC, a closed circuit or conductor plates are not necessary. 
Damping to dipole oscillation causes loss.  (Bound electrons) 

The wave in a lossy medium loses a certain percentage of its energy per distance propagated, 
and therefore decays.  In what trend?

Lossless Lossy No Change. In this course we 
ignore magnetic loss even when 
considering lossy media

Real current plus 
displacement current

Displacement current has a π/2 
phase difference with H (the 
factor j), while real current in 
phase with H.Left side gains factor j due to

= −jk

Therefore H & E are in phase. 
See slides 34 (& 22). 
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The wave in a lossy medium loses a certain percentage of its energy per distance propagated, 
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Lossless
Lossy No Change. In this course we 

ignore magnetic loss even when 
considering lossy media

Real current plus 
displacement current

Displacement current has a π/2 
phase difference with H (the 
factor j), while real current in 
phase with H.





Define
⇒

Replace ε with εc, and you get the lossy case.  Everything is 
“formally” the same. Just keep in mind that εc is complex.



Lossless Lossy

k2 = ω2εµ

γ is the equivalent of jk; γ 2 the equivalent of −k2

For the lossy case, let

What do these two terms mean?



What do these two terms mean?

Consider one of these two solutions

𝜙𝜙
Recall that we defined

Thus, = ??? = ???

Consider

???Then,



Now we look at the wave propagating in one direction:

Recall the wave impedance

is real are in phase in the lossless case.

µ and ε are both real and positive 

In a lossy medium, with εc replacing ε, 

are not in phase.

Keep in mind that εc is complex.

Recall the characteristic impedances of 
lossless and lossy transmission lines.

Origin of the difference between lossless and lossy:
Displacement current (always present) is 
π/2 out of phase with E field. 
A π/2 of phase shift from Faraday’s law.  
Thus E & H in phase in lossless case. 
Real current (only in lossy media) is in 
phase with E.
Thus E & H not in phase in lossy case. 



We now relate the medium properties σ, µ, and ε to γ

(σ << ωε for good insulators)

Compare
Lossless

Lossy



Since εc is complex, are not in phase , with εc replacing ε.

In a lossy medium, what is the phase difference between ?

Review these notes, along with textbook Section 7-1.
Finish Homework 12.
Compare the E & H waves here with the v and i waves 
in transmission lines.  By doing this, you will gain a 
good understanding of waves.



• Electromagnectic plane waves are transverse waves
o Not all EM waves are transverse. 

• E ⊥ H
• E ⊥ �𝒌𝒌 and H ⊥ �𝒌𝒌, k being the wave vector 

representing the propagation direction

in lossless media
This relation independent of choice of coordinate

• Constant ratio between �𝐸𝐸 and �𝐻𝐻: wave impedance 
• Wave impedance mismatch results in reflection
• Wave impedance real in lossless media, thus E and H in phase
• Wave decays in lossy media; loss due to finite conductivity
• “Complex dielectric constant” used to treat loss; simple expression of 

decay constant and propagation constant for good insulators
• Due to complex dielectric constant (resulting from real current that is 

in phase with E), wave impedance of a loss medium is complex
o Thus E and H not in phase in a lossy medium. 

Take-home Messages

Our discussions limited to homogeneous, isotropic, dispersionless, 
and non-magnetic (µr = 1) media.

Limitations:



End of Semester
• Review all notes, listed textbook sections. Review homework, quizzes, tests 
• Review the first ppt – Introduction  
• Review the course contents as a whole, and relate to other subjects: a new level 

of understanding emerges when you see the connections
• Strive to gain true understanding (necessary condition for an A in this course)
• Answer questions I raised in class but did not answer (all in slides)
• Final (10:30 a.m. – 12:45 p.m., Fri 12/9; 2 hr exam + 0.25 hr extra time): EM 

field theory (contents after Test 1) weighs much more, but there will be 
transmission line problems.  Transmission line problems will not involve 
detailed work; they test your understanding of the most basic essence. 

• Think about the Project (due Wed 12/14 at noon). Get something out of it. You 
are welcome to talk to me for feedback. 

• Lab on double-stub matching: bonus for describe underlying principles 
• Incentives for returning Test 1 and taking TNVoice (closing at midnight Thu 

12/8) 
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