A traveling wave is the propagation of motion (disturbance) in a medium.

The one-dimensional (1D) case

The “perturbation” propagates on.
Traveling Wave in Higher Dimensions

Plane waves in 3D

Example: sound waves

Watch animation: http://en.wikipedia.org/wiki/Plane_wave
A line source makes a cylindrical wave.

Cylindrical wave (3D; top view)

Water surface wave (2D) (Circular wave)

Make a cylindrical wave from a plane wave
A point source makes a spherical wave.

Intensity is energy carried per time per area, i.e., power delivered per area.

Conservation of energy:

\[\frac{S}{4\pi r^2} = I \]

The energy twice as far from the source is spread over four times the area, hence one-fourth the intensity.
Somehow start with a changing electric field E, say $E \propto \sin \omega t$

The changing electric field induces a magnetic field, $B \propto \frac{\partial E}{\partial t} \propto \cos \omega t$

If the induced magnetic field is changing with time, it will in turn induce an electric field

$E \propto \frac{\partial B}{\partial t} \propto \sin \omega t$

And so on and so on....
Just as the mechanical wave on a string.
Mathematical Expression of the Traveling Wave

A traveling wave is the propagation of motion (disturbance) in a medium.

At time 0,
\[y = f(x) \]

At time \(t \),
\[y = f(x-\nu t) \]

This is the general expression of Traveling waves.

Questions:
What kind of wave does \(y = f(x+\nu t) \) stand for?
What about \(y = f(\nu t-x) \)?
What about $y = f(vt - x)$?

$$f(vt - x) = f[-(x - vt)]$$

Define $f(-x)$ your “new f”, or $g(x) \equiv f(-x)$, so it’s the same wave!

So, which way should I go? $f(x - vt)$ or $g(vt - x)$?
To your convenience!
No big deal. But this affects how we define our “sign conventions.”
People in different disciplines use different conventions.

If you are more concerned about seeing a waveform on an oscilloscope, you like $g(vt - x)$ better.
If you are more concerned about the spatial distribution of things, you like $f(x - vt)$ better.
We will talk later about how this choice affects ways to write the “same” (but apparently different) equations in different disciplines.
What about $y = f(vt-x)$?

$$f(vt-x) = f[v(t-x/v)]$$

At any x, you have a time-delayed version of $f(vt)$. The time delay is simply the time for the wave to travel a distance x, i.e., x/v.

For a single-wavelength, sinusoidal wave, this is always true. Because the wave travels at just one speed, v.

But, a general wave has components of different wavelengths/frequencies. The speeds of the different components may be different.

I am already talking about an important concept.

Then, a distance x later, the “waveform” in time (as you see with an oscilloscope) will change. This is called “dispersion”
Let’s now look at the special case of the sinusoidal wave

\[y(x, t) = A \cos (\omega t - \beta x + \phi_0) \]

\[= A \cos \left[\beta \left(\frac{\omega}{\beta} t - x + \frac{\phi_0}{\beta} \right) \right] \]

\[= A \cos \left[\beta (\nu t - x) + \phi_0 \right] \]

\[= f(x - \nu t) = g(\nu t - x) \]

You can write this function, or group the terms, in so many ways.
It’s just about how you view them

\[\lambda \text{ is the "spatial period";} \quad \frac{1}{\lambda} \text{ is the "spatial frequency".} \]

And, \(\beta \) is the spatial equivalent of \(\omega \).
Call it the wave vector or propagation constant.
\[y(x, t) = A \cos (\omega t - \beta x + \phi_0) \]

\[= A \cos \left[\beta \left(\frac{\omega}{\beta} t - x + \frac{\phi_0}{\beta} \right) \right] \]

\[= A \cos \left[\beta (\omega t - x) + \phi_0 \right] \]

\[= f(x - vt) = g(vt - x) \]

\[v = \frac{\omega}{\beta} = \frac{2\pi f}{2\pi/\lambda} = f\lambda \]

\[\leq \frac{2\pi/T}{2\pi/\lambda} = \frac{\lambda}{T} \]

One wavelength traveled in one period.

For the free space (i.e. vacuum), \(v = c = \frac{\omega}{\beta} \), or \(\omega = c\beta \).

The relation between \(\beta \) and \(\omega \) for a wave traveling in a medium is a material property of the medium. We call it the “dispersion relation” or just “dispersion.”

Recall that we used the term to describe a phenomenon. Related.

In general the dispersion relation is not perfectly linear.

\(\frac{\omega}{\beta} \equiv v \) is not a constant. We call it the phase velocity, \(v_p \).

Thus the dispersion!
\[y(x, t) = A \cos \left(\omega t - \beta x + \phi_0 \right) \]

\[
= A \cos \left[\beta \left(\frac{\omega}{\beta} t - x + \frac{\phi_0}{\beta} \right) \right]
\]

\[
= A \cos \left[\beta (\omega t - x) + \phi_0 \right]
\]

\(\phi_0 \) is the reference phase (the wave’s phase with time and space set to zero)

\[y(x, t) = A \cos \left[\omega \left(t + \frac{\phi_0}{\omega} \right) - \beta x \right] \]

\[
= A \cos \left[\omega t - \beta \left(x - \frac{\phi_0}{\beta} \right) \right]
\]

Shift in time

Shift in position

Two ways to look at this.

Two ways to group the terms.
For the same wave,

\[y(x, t) = A \cos \left(\frac{2\pi}{T} x + \phi_0 \right) = A \cos \left(\frac{2\pi}{T} x - \frac{2\pi}{\lambda} x + \phi_0 \right) \]

"Spatial period"

Take snapshots at different times

Convert phase to distance

\[y(x, t) = A \cos \left(-\frac{2\pi}{\lambda} x + \phi_0 \right) \]

= \(A \cos \left[-\frac{2\pi}{\lambda} x + \phi_0 + \frac{2\pi}{T} t \right] \)

For the same wave,

\[y(x, t) = A \cos \left(\frac{2\pi}{T} t + \phi_0 \right) \]

Measure waveforms at different locations

Convert phase to time

\[y(x, t) = A \cos \left(\frac{2\pi}{T} t + \phi_0 - \frac{2\pi}{\lambda} x \right) = A \cos \left[\frac{2\pi}{T} t + \phi_0 - \frac{2\pi}{\lambda} x \right] \]
Waves carry information.

How much information does a sinusoidal wave carry?

Why do we study sinusoidal waves?
We want the wave to carry the “undistorted” information after it travels a distance x to reach us.

We want its snapshots in space to be the same as at $t = 0$.
We want its waveform in time to be the same as at $x = 0$.

Recall that we talked about dispersion.

In most cases, the dispersion is not too bad.
The $\omega(\beta)$ is only slightly nonlinear.

The “signal” or “wave packet” or “envelope” travels at a different speed than v_p, which is different for different frequencies anyway.
That speed is the “group velocity” v_g.

Run the extra mile:
Find out the expression for v_g, given the dispersion $\omega(\beta)$. Derive it.
You’ll have a deep understanding about wave propagation.
Attenuation

In some cases, the amplitude A decreases as the wave propagates.

For many types of waves, the power density $\propto A^2$.

For unit distance traveled, a fraction of power density is lost.

$$\frac{d A^2(x)}{A^2(x)} = -2\alpha dx$$

$$\frac{d A^2(x)}{dx} = -2\alpha A^2(x)$$

$$A^2(x) = A^2(0) e^{-2\alpha x}$$

$$A(x) = A(0) e^{-\alpha x}$$

$$y(x, t) = A_0 e^{-\alpha x} \cos(\omega t - \beta x + \phi_0)$$