Consider a pair of wires ideal wires)

Length >> λ, say, infinitely long

Voltage along a cable can vary!

We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

There is capacitance between any two pieces of conductors.
A pair of plates, wires, etc., or the core and shields of a co-ax cable.

$$
c=c^{\prime} \Delta z
$$

C^{\prime} : capacitance
per length

There is capacitance between any two pieces of conductors.
A pair of plates, wires, etc., or the core and shields of a co-ax cable.

$$
c=c^{\prime} \Delta z
$$

C': capacitance per length

A piece of wire is actually an inductor

$$
B \propto i
$$

When i changes w / t
so does $B \quad \frac{\mu}{d t} \rightarrow \frac{d ' B}{d t}$
$v \propto E \propto \frac{\partial B}{\partial t} \Rightarrow v \alpha \frac{d i}{d t}$

$$
v=L \frac{d i}{d t}
$$

Voltage v along the wire

There is capacitance between any two pieces of conductors.
A pair of plates, wires, etc., or the core and shields of a co-ax cable.

$$
c=c^{\prime} \Delta z
$$

C': capacitance per length

A piece of wire is actually an inductor

$$
B \propto i
$$

when i changes w / t
so does $B \frac{d}{d t} \rightarrow \frac{d^{\prime} B}{d t}$
$v \propto E \propto \frac{\partial B}{\partial t} \Rightarrow v \alpha \frac{d i}{d t}$

$$
v=L \frac{d i}{d t}
$$

Voltage v along the wire
Similarly, a pair of coupled wires

Voltage v around the loop!

There is capacitance between any two pieces of conductors. A pair of plates, wires, etc., or the core and shields of a co-ax cable.

$$
c=C^{\prime} \Delta z
$$

C': capacitance per length

A piece of wire is actually an inductor

$$
B \propto i
$$

When i changes w / t
so does $B \frac{h}{d t} \rightarrow \frac{d \text { ' } B}{d t}$
$v \propto E \propto \frac{\partial B}{\partial t} \Rightarrow v \alpha \frac{d i}{d t}$

$$
v=L \frac{d i}{d t}
$$

Voltage v along the wire
Similarly, a pair of coupled wires

L^{\prime} is inductance per length

$$
L=L^{\prime} \Delta z
$$

Voltage v around the loop!

To make things simple, we first consider a pair of $\underline{\text { ideal }}$ wires. No resistance, no shunt (leakage).

Pay close attention. We take a different approach than does the book.

To make things simple, we first consider a pair of ideal wires.
No resistance, no shunt (leakage).

Pay close attention. We take a different approach than does the book.
Now, zoom in on one segment:

Inductor
Capacitor

$$
\begin{aligned}
\Delta v & =v(z+\Delta z, t)-v(z, t) \\
& =-L^{\prime} \Delta z \frac{\partial i}{\partial t} \\
\frac{\partial v}{\partial z} & =\lim _{\Delta z \rightarrow 0} \frac{\Delta v}{\Delta z}=-L^{\prime} \frac{\partial i}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
\Delta i & =i(z t \Delta z, t)-i(z, t) \\
& =-c^{\prime} \Delta z \frac{\partial v}{\partial t} \\
\frac{\partial i}{\partial z}= & \lim _{\Delta z \rightarrow 0} \frac{\Delta i}{\Delta z}=-c^{\prime} \frac{\partial v}{\partial t}
\end{aligned}
$$

Take derivatives with regard to z, t

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial z^{2}}=-L^{\prime} \frac{\partial^{2} i}{\partial t \partial z} \\
& \frac{\partial^{2} v}{\partial z \partial t}=-L^{\prime} \frac{\partial^{2} i}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} i}{\partial z^{2}}=-c^{\prime} \frac{\partial^{2} v}{\partial t \partial z} \\
& \frac{\partial^{2} i}{\partial z \partial t}=-c^{\prime} \frac{\partial^{2} v}{\partial t^{2}}
\end{aligned}
$$

Inductor

Partial differential equations
Do these 2 equations look familiar to you? What are they?

Let $v_{p}=\frac{1}{\sqrt{L^{\prime} c^{\prime}}}$, we have $\frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{v_{p}^{2}} \frac{\partial^{2} v}{\partial t^{2}}$
$v=f\left(v_{p} t-z\right)$ is the general solution to this equation.

Do it on your own: verify this.

$$
\frac{\partial^{2} v}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} U}{\partial t^{2}}
$$

Let $v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}$, we have $\quad \frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{v_{p}^{2}} \frac{\partial^{2} v}{\partial t^{2}}$
$v=f\left(v_{p} t-z\right)$ is the general solution to this equation.
$\frac{\partial^{2} v}{\partial \xi^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} U}{\partial t^{2}}$

$$
\text { Let } v_{p}=\frac{1}{\sqrt{L^{\prime} c^{\prime}}} \text {, we have } \quad \frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{v_{p}^{2}} \frac{\partial^{2} v}{\partial t^{2}}
$$

$v=f\left(v_{p} t-z\right)$ is the general solution to this equation.

This is the wave equation in 1D!
More strictly, the lossless, dispersionless, linear wave equation. Assume: no resistance, no leakage; v_{p} independent of frequency; v_{p} independent of voltage v

The equation for i is in the same form formally the same.
Therefore, formally same solution.

$$
\frac{\partial^{2} i}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} i}{\partial t^{2}}
$$

These two together are called the telegrapher's equations.
Solution to both take general form $f\left(v_{p} t-z\right)$.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} v}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} U}{\partial t^{2}} \\
\frac{\partial^{2} i}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} i}{\partial t^{2}}
\end{array}\right.
$$

Is this amazing?
We arrived at the wave equation from circuit theory, regardless of frequency. Why does this approach work?

Circuit theory is a simple part of EM (black boxes: lumped elements)
$-\quad i \propto d v / d t$
$Q \propto v \Rightarrow Q \equiv C v$
C is a proportional constant.

$$
C \frac{d v}{d t}=\frac{d Q}{d t}=i
$$

component

element

$$
v=L \frac{d i}{d t}
$$

These "lumped" element models are valid only
A wire (or a pair of wires) when dimensions << wavelength

A circuit element is a model of a physical phenomenon, not necessarily a circuit component.

Formally same wave equations for voltage $\&$ current

Solution to both take general form $f\left(v_{p} t-z\right)$.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} v}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} U}{\partial t^{2}} \\
\frac{\partial^{2} i}{\partial z^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} i}{\partial t^{2}}
\end{array}\right.
$$

Is this amazing?
We arrived at the wave equation from circuit theory, regardless of frequency. Why does this approach work?

One more agreement, for 2-wire cables:

$$
L^{\prime}=\frac{\mu}{\pi} \ln \left[\frac{D}{d}+\sqrt{\left(\frac{D}{d}\right)^{2}-1}\right]
$$

$$
c^{\prime}=\frac{\pi \varepsilon}{\ln \left[\frac{D}{d}+\sqrt{\left(\frac{D}{d}\right)^{2}-1}\right]}
$$

$$
\therefore \quad U_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=\frac{1}{\sqrt{\mu \varepsilon}}
$$

$$
\text { See Table } 2-1 \text {, pp. } 52 \text { in } 8 / E \text { (pp. } 45 \text { in 7/E, pp. } 53 \text { in 6/E) }
$$

Consistent with EM theory (to be discussed later)!
Check offline for other transmission lines.
(There will be homework problems for you to learn about other types of transmission lines, as well as non-ideal co-ax cables)

$$
\frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{v_{p}^{2}} \frac{\partial^{2} v}{\partial t^{2}}
$$ (the equation for i is in the same form formally the same.)

$v=f\left(v_{p} t-z\right)$ is the general solution to this equation.
What are the single frequency, simple harmonic solutions?
Single frequency, simple harmonic solutions:

$$
\begin{array}{cl}
v(z, t)=\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right) & \frac{\omega}{\beta}=v_{p} \\
i(z, t)=\left|I_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{10}^{+}\right) & \begin{array}{l}
\text { (formally the same equation, thus } \\
\text { formally the same solution.) }
\end{array}
\end{array}
$$

Here, $V_{0}{ }^{+}$and $I_{0}{ }^{+}$are "complex amplitudes" that we will talk about later. For the waves, they are not the phasors of the waves.
We will talk about the distinction.
$\left|V_{0}{ }^{+}\right|$and $\left|I_{0}{ }^{+}\right|$are the real amplitudes, or simply amplitudes.
We have not yet shown the voltage and current waves are in phase.
But they are. You can take this as a conclusion for now.
The proof is on next page.

Here we show that the voltage and current waves are in phase with each other:

$$
\begin{aligned}
& v_{\bar{v}}^{\prime} \frac{\nu}{v}=\beta\left|V_{0}^{+}\right| \sin \left(\omega t-\beta z+\phi_{v 0}^{+}\right) \\
& i(z, t)=\left|I_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{i 0}^{+}\right) \\
& \begin{aligned}
& \frac{\partial v}{\partial z}=\beta\left|V_{0}^{+}\right| \sin \left(\omega t-\beta z+\phi_{v 0}^{+}\right) \frac{\partial i}{\partial t}=-\omega\left|I_{0}^{+}\right| \sin \left(\omega t-\beta z+\phi_{i 0}^{+}\right) \\
& \text {Recall that } \frac{\partial v}{\partial z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta v}{\Delta z}=-L^{\prime} \frac{\partial i}{\partial t}
\end{aligned}
\end{aligned}
$$

For this to hold for any arbitrary z, we must have $\phi_{\nu 0}^{+}=\phi_{i 0}^{+} \equiv \phi_{0}^{+}$
So, in phase!
We also get a by-product: $\begin{aligned} & \|(z, t)\left|V_{0}^{\dagger}\right| \cos \left((0)^{t}-\mid v_{p, i n}^{\dagger}\right) \\ & \text { Unit: } \frac{\mathrm{m}}{\mathrm{s}} \frac{\mathrm{H}}{\mathrm{m}}=\mathrm{H} / \mathrm{s}=\Omega\end{aligned}$

Do not just read through. Use scratch paper!

These conclusions are important!
Anywhere, any time $v(z, t) i(z, t)=$ constant

Define $\frac{\left|V_{0}^{+}\right|}{\left|I_{0}^{+}\right|}=\frac{\omega L^{\prime}}{\beta}=v_{p} L^{\prime} \equiv Z_{0}$

$$
\left(Z_{0}=v(z, t) / i(z, t) \text { is real, i.e., purely resistive, for lossless lines }\right)
$$

Consider:

Define $\frac{\left|V_{0}^{+}\right|}{\left|I_{0}^{+}\right|}=\frac{\omega L^{\prime}}{\beta}=v_{p} L^{\prime} \equiv Z_{0}$

$$
\left(Z_{0}=v(z, t) / i(z, t) \text { is real, i.e., purely resistive, for lossless lines }\right)
$$

Consider:

VS.

Infinitely long
There is no way to tell the difference just by measuring v and i :
Energy propagating away vs. energy dissipated
Analogy: laser beam going to infinity or hitting a totally black wall

Define $\frac{\left|V_{0}^{+}\right|}{\left|I_{0}^{+}\right|}=\frac{\omega L^{\prime}}{\beta}=v_{p} L^{\prime} \equiv Z_{0}$

$$
\left(Z_{0}=v(z, t) / i(z, t) \text { is real, i.e., purely resistive, for lossless lines }\right)
$$

Consider:

Infinitely long
There is no way to tell the difference just by measuring v and i :
Energy propagating away vs. energy dissipated
Analogy: laser beam going to infinity or hitting a totally black wall

Define $\frac{\left|V_{0}^{+}\right|}{\left|I_{0}^{+}\right|}=\frac{\omega L^{\prime}}{\beta}=v_{p} L^{\prime} \equiv Z_{0}$

$$
\left(Z_{0}=v(z, t) / i(z, t) \text { is real, i.e., purely resistive, for lossless lines }\right)
$$

Consider:

Infinitely long
There is no way to tell the difference just by measuring v and i :
Energy propagating away vs. energy dissipated
Analogy: laser beam going to infinity or hitting a totally black wall

THE most important new concept in the first half of this course

You may also use $\frac{\partial i}{\partial z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta i}{\Delta z}=-C^{\prime} \frac{\partial v}{\partial t}$
Doing the derivatives in a similar way as in last page, you will also see the voltage and current waves are in phase.
You will have a similar "by-product" about the v / i ratio.
It may look different, but you should be able to show they are equal.
Do it on your own. Hint: use $v_{p}=\frac{1}{\sqrt{L^{\prime} c^{\prime}}}$

Now you can work on HW2: P1, P2

The solution copied:

$$
\begin{gathered}
v^{+}(z, t)=\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right) \\
i^{+}(z, t)=\left|I_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)
\end{gathered}
$$

In what direction do these waves propagate?

Waves propagating the other way are also solutions to the same equations:

$$
\begin{gathered}
v^{-}(z, t)=\left|V_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right) \\
i^{-}(z, t)=\left|I_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right)
\end{gathered}
$$

The superscript + or - signifies propagation direction: $+z$ or $-z$.
Of course, any linear combinations of waves in opposite directions are also solutions:

$$
\begin{gathered}
v(z, t)=\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)+\left|V_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right) \\
i(z, t)=\left|I_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)+\left|I_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right)
\end{gathered}
$$

They may represent combinations of incident and reflected waves.

Recall that we have a mathematical tool to

1. Avoid the pain of dealing trigonometric functions, and
2. Turn partial differential equations to ordinary differential equations by putting aside the known time variation

Express waves with phasors

$$
v(z, t)=\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)+\left|V_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right)
$$

phasor

$$
\widetilde{V}=\widetilde{V}^{+}+\widetilde{V}^{-}=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}
$$

Where do the phases go?

Express waves with phasors

$$
v(z, t)=\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)+\left|V_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right)
$$

phasor

$$
\widetilde{V}=\widetilde{V}^{+}+\widetilde{V}^{-}=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}
$$

Where do the phases go?
Recall the details how we convert a time-domain function to a phasor:
By adding an "imaginary partner"
$v(z, t) \rightarrow\left|V_{0}^{+}\right| e^{j\left(\omega t-\beta z+\phi_{0}^{+}\right)}+\left|V_{0}^{-}\right| e^{j\left(\omega t+\beta z+\phi_{0}^{-}\right)}=\left[\left(\left|V_{0}^{+}\right| e^{j \phi_{0}^{+}}\right) e^{-j \beta z}+\left(\left|V_{0}^{-}\right| e^{j \phi_{0}^{-}}\right) e^{j \beta z}\right] e^{j \omega t}$
This is not the phasor yet.
Throw away the known time variation $e^{j \omega t}$
and define the complex amplitudes $V_{0}^{+}=\left|V_{0}^{+}\right| e^{j \phi_{0}^{+}}$and $V_{0}^{-}=\left|V_{0}^{-}\right| e^{j \phi_{0}^{-}}$
We get the phasor:

$$
\begin{aligned}
& \widetilde{V}=\widetilde{V}^{+}+\widetilde{V}^{-}=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z} \\
& \text { Negative going } \\
& \text { Positive going }
\end{aligned}
$$

Notice sign and direction

Express waves with phasors

The current wave is similar

$$
i(z, t)=\left|I_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)+\left|I_{0}^{-}\right| \cos \left(\omega t+\beta z+\phi_{0}^{-}\right)
$$

phasor

$$
\widetilde{I}=\widetilde{I}^{+}+\widetilde{I}^{-}=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{j \beta z}
$$

This tool makes our life much easier when we deal with a more complicated situation. Here's the more complicated situation:

No wires are ideal.
Any wire has some resistance.

$$
\begin{aligned}
& R=R^{\prime} \Delta z \\
& \text { Resistance per lenght }
\end{aligned}
$$

There is always some shunt conductance between two wires

Notice that R^{\prime} and G^{\prime} describes two different things. $R^{\prime} \neq 1 / G^{\prime}$

Take derivatives on one equation and insert it into the other, you get

$$
\frac{d^{2} \tilde{v}}{d z^{2}}-\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right) \tilde{V}(z)=0
$$

and a formally same equation for the current.
This is an ordinary differential equation. Because we used phasors.
We have arrived at this equation just by circuit analysis using phasors. You could also first do the circuit analysis in the time domain, arriving at partial differential equations, and then convert quantities to phasors and arrive at the same ordinary differential equations, as done in the book (Sections 2-3 \& 2-4).

The partial differential equations for the general, more complicated situation are, well, too complicated. We don't even bother to tackle them. Let's look at the simpler ordinary differential equation:

$$
\frac{d^{2} \tilde{V}}{d z^{2}}-\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right) \tilde{V}(z)=0
$$

Before solving this equation, let's first have a digression back to the ideal case

$$
\begin{gathered}
R^{\prime}=0 \quad G^{\prime}=0 \\
\frac{d^{2} \widetilde{v}}{d z^{2}}+\omega^{2} L^{\prime} c^{\prime} \widetilde{V}=0 \quad \square \widetilde{V}(z)=V_{0}^{ \pm} e^{\mp j \omega \sqrt{L^{\prime} C^{\prime}} z}
\end{gathered}
$$

Recall that $\frac{\omega}{\beta}=v_{p}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}} \Rightarrow \beta=\omega \sqrt{L^{\prime} c^{\prime}}$
we have $\widetilde{V}=V_{0}^{ \pm} e^{\mp j \beta z}$
Notice that these are actually two solutions.
What are the difference between the two solutions?

Waves propagating in two opposite directions: $\quad \widetilde{V}=\widetilde{V}^{+}+\widetilde{V}^{-}=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}$
No surprise. The solutions we got earlier for the ideal case.
Now, back to the more complicated, general case

$$
\frac{d^{2} \tilde{v}}{d z^{2}}-\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right) \hat{V}(z)=0
$$

Let

$$
r^{2}=\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)
$$

we can write $\frac{d^{2} \tilde{V}}{d z^{2}}-p^{2} \tilde{V}(z)=0$
Compare this to the ideal case

These two equations are "formally" the same, except $-\gamma^{2}$ is complex.

$$
\beta^{2} \rightarrow-\gamma^{2} \text { thus }-j \beta \rightarrow-\gamma \text { and } j \beta \rightarrow \gamma
$$

So, the solutions are

$$
\widetilde{V}=V_{0}^{+} e^{-r z}+V_{0}^{-} e^{r z}
$$

What kind of waves are they?

$$
\widetilde{V}=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z}
$$

What kind of waves are they?
Let $\gamma=\alpha+j \beta$ (we are doing nothing. Any complex number can be written as this), we have the first solution

$$
\widetilde{V}^{+}=V_{0}^{+} e^{-\gamma z}=V_{0}^{+} e^{-(\alpha+j \beta) z}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}
$$

What kind of wave is this?

Similarly, $\quad \widetilde{I}^{+}=I_{0}^{+} e^{-\gamma z}=I_{0}^{+} e^{-(\alpha+j \beta) z}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}$

Why do the waves attenuate when there is resistance or shunt leakage?
(Why is there no attenuation when the wire is made of a perfect conductor and the medium between them is a perfect insulator)?

Recall that, in circuit theory, reactive versus resistive..., ...

How to express the decaying wave propagating in the $-z$ direction?

Again, there can be waves going the other way.

$$
\widetilde{V}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}+V_{0}^{-} e_{\uparrow}^{\alpha z} e^{j \beta z} \quad \widetilde{I}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+I_{0}^{-} e_{4}^{\alpha z} e^{j \beta z}
$$

We were here at the end of class on Tue 9/6/2022.

Again, there can be waves going the other way.

$$
\widetilde{V}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}+V_{0}^{-} e_{\uparrow}^{\alpha z} e^{j \beta z} \quad \widetilde{I}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+I_{0}^{-} e_{4}^{\alpha z} e^{j \beta z}
$$

Again, we discuss the most important concept of the first half of the semester:

$$
\widetilde{V}=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \longleftrightarrow^{\text {Take derivatives }} \frac{d \widetilde{V}}{d z}=-\gamma V_{0}^{+} e^{-\gamma z}+\gamma V_{0}^{-} e^{\gamma z}
$$

Again, there can be waves going the other way.

$$
\widetilde{V}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}+V_{0}^{-} e_{\text {sign }}^{\alpha z} e^{j \beta z} \quad \widetilde{I}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+I_{0}^{-} e_{\text {sign }}^{\alpha z} e^{j \beta z}
$$

Again, we discuss the most important concept of the first half of the semester:
Take derivatives

$$
\widetilde{V}=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z}
$$

$$
\frac{d \widetilde{V}}{d z}=-\gamma V_{0}^{+} e^{-\gamma z}+\gamma V_{0}^{-} e^{\gamma z}
$$

From circuit analysis
$\frac{d \widetilde{V}}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta \widetilde{V}}{\Delta z}=-\left(R^{\prime}+j \omega L^{\prime}\right) \widetilde{I}=-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{+} e^{-\alpha z} e^{-j \beta z}-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{-} e^{\alpha z} e^{j \beta z}$

Again, there can be waves going the other way.

$$
\widetilde{V}=V_{0}^{+} e^{-\alpha z} e_{\text {sign }}^{-j \beta z}+V_{0}^{-} e_{4 z}^{\alpha z} e^{j \beta z} \quad \widetilde{I}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+I_{0}^{-} e_{\text {sign }}^{\alpha z} e^{j \beta z}
$$

Again, we discuss the most important concept of the first half of the semester:

$$
\widetilde{V}=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\imath z}
$$

Take derivatives

From circuit analysis

$$
\left(\frac{d \widetilde{V}}{d z}\right)=-\gamma V_{0}^{+} e^{-\gamma z}+\gamma V_{0}^{-} e^{\gamma z}
$$

$$
\left(\frac{d \widetilde{V}}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta \widetilde{V}}{\Delta z}=-\left(R^{\prime}+j \omega L^{\prime}\right) \widetilde{I}=-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{+} e^{-\alpha z} e^{-j \beta z}-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{-} e^{\alpha z} e^{j \beta z}\right.
$$

Again, there can be waves going the other way.

$$
\widetilde{V}=V_{0}^{+} e_{\text {sign }}^{-\alpha z} e^{-j \beta z}+V_{0}^{-} e_{4}^{\alpha z} e^{j \beta z z} \quad \widetilde{I}=I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+I_{0}^{-} e_{\text {sign }}^{\alpha z} e^{i \beta z}
$$

Again, we discuss the most important concept of the first half of the semester:

$$
\begin{aligned}
& \widetilde{V}=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \\
& \text { m circuit analysis } \\
& =\lim _{\Delta z \rightarrow 0} \frac{\Delta \widetilde{V}}{\Delta z}=-\left(R^{\prime}+j \omega L^{\prime}\right) \widetilde{I}=-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{+} e^{-\alpha z} e^{-j \beta z}+\gamma V_{0}^{-} e^{\gamma z} \\
& -\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{-} e^{\alpha z} e^{j \beta z}
\end{aligned}
$$

For the identity to hold for all z, we must have the following:
For the $e^{-y z}$ term,

$$
\begin{aligned}
& \gamma V_{0}^{+}=\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{+} \\
\Rightarrow \quad & \frac{V_{0}^{+}}{I_{0}^{+}}=\frac{R^{\prime}+j \omega L^{\prime}}{\gamma}=\frac{R^{\prime}+j \omega L^{\prime}}{\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}}=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}}
\end{aligned}
$$

For the $e^{\gamma z}$ term, $\quad \gamma V_{0}^{-}=-\left(R^{\prime}+j \omega L^{\prime}\right) I_{0}^{-}$
$\Rightarrow \frac{V_{0}^{-}}{I_{0}^{-}}=-\frac{R^{\prime}+j \omega L^{\prime}}{\gamma}=-\frac{R^{\prime}+j \omega L^{\prime}}{\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}}=-\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}}$
Notice negative signs. Just because of sign convention (see circuit diagram)

the characteristic impedance
Complex and explicitly dependent on frequency in the general (lossy) case.

For the wave traveling towards $+z$,

$$
\begin{array}{ll}
& \widetilde{V}^{+}=V_{0}^{+} e^{-\gamma z} \\
\widetilde{I}^{+}=I_{0}^{+} e^{-\gamma z} \\
\text { At any } z, & \frac{\widetilde{V}^{+}(z)}{\widetilde{I}^{+}(z)}=\frac{V_{0}^{+}}{I_{0}^{+}}=Z_{0}
\end{array}
$$

For the wave traveling towards $-z$,

$$
\begin{aligned}
\widetilde{V}^{-} & =V^{-} e^{\jmath z} \\
\widetilde{I}^{-} & =I_{0}^{-} e^{\jmath z}
\end{aligned}
$$

At any $z, \frac{\widetilde{V}^{-}(z)}{\widetilde{I}^{-}(z)}=\frac{V_{0}^{-}}{I_{0}^{-}}=-Z_{0}$
Again, notice this negative sign.

These relations are separately held by the two waves in opposite directions.
In general, $Z_{0} \equiv \sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}}$ is complex and explicitly dependent on frequency. Are $V_{0}{ }^{+}$and $I_{0}{ }^{+}$in phase in the general case?

For the lossless transmission line, $R^{\prime}=0$ and $G^{\prime}=0$,

$$
Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}}
$$

Real. No explicit frequency dependence.

Take-home messages

- Voltage v and current i follow the same differential equation
- Therefore solutions in same form
- Therefore there is a constant ratio between their amplitudes and there is a constant shift between their phases for harmonic waves going in one direction
- In the phasor form, the complex amplitude ratio is $\pm Z_{0}$
- Being a voltage/current ratio, Z_{0} has the dimension of impedance
- In general (lossy case), Z_{0} is complex and explicitly depends on ω
- In the lossless case, Z_{0} is real w/o explicit frequency dependence
- Z_{0} being real means the voltage and the current are in phase. It also means the equivalent circuit for a (semi-)infinitely long transmission line is simply a resistor with a resistance value Z_{0}.

At this point, review textbook up to Section 2-4.
Finish P1 through P6 of HW2.

The cables
Coaxial cable

http://samuelprof.tripod.com/id10.html
Ribbon twin lead: (used to be) used to connect a television receiving antenna to a home television set.

https://www.moonraker.eu/antennas/antenna-hardware/ribbon-feeder/75-m-75-ohm-twin-feeder

The model

The inductors (and resistors in lossy lines) are on only one side. Which side is which wire???

The model

The inductors (and resistors in lossy lines) are on only one side. Which side is which wire???

A pair of coupled wires

The cables

Coaxial cable

Ribbon twin lead: (used to be) used to connect a television receiving antenna to a home television set.

LOW - LOSS DIELECTRIC

Question:

How to vary the Z_{0} of the transmission line of a given construction?

Hint: Consider the simple lossless case

$$
Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}}
$$

and use Table 2-1 in Textbook.

$$
Z_{0}=300 \Omega
$$

https://www.dx-wire.de/Ing/en/wire-cable/300-ohm-twinlead/300-ohm-twin-lead.html
https://en.wikipedia.org/wiki/Coaxial_cable

There is no way to tell the difference just by measuring v and i.
Energy propagating away vs. energy dissipated
Analogy: laser beam going to infinity or hitting a totally black wall

Impedance match

> By the way, transmission line (thick line) versus "wire wires" (thin lines)

The same as the infinitely long line!

Now, let's look at a transmission line with a source and a load.

If $Z_{L}=Z_{0}$, impedance matched.
All energy delivered to load. Good!
(we can view this from the vantage point of equivalent circuits)

Now, we just focused on the load. Will talk about the line and generator later.

Now, let's look at a transmission line with a source and a load.

If $Z_{L}=Z_{0}$, impedance matched.
All energy delivered to load. Good!
(we can view this from the vantage point of equivalent circuits)
What if $Z_{L} \neq Z_{0}$?

Now, we just focused on the load. Will talk about the line and generator later.

The load says $\frac{\widetilde{V}(0)}{\widetilde{I}(0)}=\frac{\widetilde{V}_{L}}{\widetilde{I}_{L}}=Z_{L}$
If there were only the incident wave, $\frac{\widetilde{V}^{+}(0)}{\widetilde{I}^{+}(0)}=\frac{V_{0}^{+}}{I_{0}^{+}}=Z_{0}$
Something has to happen to resolve this "conflict." That something is reflection.

$$
\widetilde{V}_{L}=\widetilde{V}(z=0)=V_{0}^{t}+V_{0}^{-} \quad \text { Sign due to convention }
$$

$$
\tilde{I_{L}}=\tilde{I}(z=0)=I_{0}^{+}+I_{0}^{-}=\frac{V_{0}^{+}}{Z_{0}}-\frac{V_{0}^{-}}{Z_{0}}
$$

Both waves separately follow

$$
V_{0}^{ \pm}= \pm I_{0}^{ \pm} Z_{0}
$$

Now, let's look at a transmission line with a source and a load.

If $Z_{L}=Z_{0}$, impedance matched.
All energy delivered to load. Good!
(we can view this from the vantage point of equivalent circuits)
What if $Z_{L} \neq Z_{0}$?

Now, we just focused on the load. Will talk about the line and generator later.

The load says $\frac{\widetilde{V}(0)}{\widetilde{I}(0)}=\frac{\widetilde{V}_{L}}{\widetilde{I}_{L}}=Z_{L}$
If there were only the incident wave, $\frac{\widetilde{V}^{+}(0)}{\widetilde{I}^{+}(0)}=\frac{V_{0}^{+}}{I_{0}^{+}}=Z_{0}$
Something has to happen to resolve this "conflict." That something is reflection.
$\widetilde{V}_{L}=\widetilde{V}(z=0)=V_{0}^{+}+V_{0}^{-} \quad$ Sign due to convention
$\tilde{I}_{L}=\tilde{I}(z=0)=I_{0}^{+}+I_{0}^{-}=\frac{V_{0}^{+}}{Z}-\frac{V_{0}^{-}}{Z_{0}} \quad$ Both waves separately follow
By definition, $Z_{L}=\frac{\widetilde{V}_{L}}{\tilde{I}_{L}}=\left(\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}}\right) Z_{0}$
Solve it and we have $V_{0}^{-}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} V_{0}^{+}$

$$
V_{0}^{ \pm}= \pm I_{0}^{ \pm} Z_{0}
$$

If $Z_{L} \neq Z_{0}$, there has to be a reflected wave.

$$
V_{0}^{-}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} V_{0}^{+}
$$

The load does not get all energy carried by the incident wave.

Where does the rest of the energy go?

If $Z_{L} \neq Z_{0}$, there has to be a reflected wave.

$$
V_{0}^{-}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} V_{0}^{+}
$$

The load does not get all energy carried by the incident wave.

Where does the rest of the energy go?
Consider analogy: laser beam hitting wall not totally black/dark.
Define the voltage reflection coefficient $\Gamma \equiv \frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{\frac{Z_{L}}{Z_{0}}-1}{\frac{Z_{L}}{Z_{0}}+1}$

$$
\left(\frac{Z_{L}}{Z_{0}}=\frac{1+\Gamma}{1-\Gamma}\right.
$$

If $Z_{L} \neq Z_{0}$, there has to be a reflected wave.

$$
V_{0}^{-}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} V_{0}^{+}
$$

The load does not get all energy carried by the incident wave.

Where does the rest of the energy go?
Consider analogy: laser beam hitting wall not totally black/dark.
Define the voltage reflection coefficient $\Gamma \equiv \frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{\frac{Z_{L}}{Z_{0}}-1}{\frac{Z_{L}}{Z_{0}}+1}$

- One-to-one mapping between Γ and Z_{L} / Z_{0}
- The ratio Z_{L} / Z_{g} more important than Z_{L} itself

$$
\left(\frac{Z_{L}}{Z_{0}}=\frac{1+\Gamma}{1-\Gamma}\right.
$$

Therefore we define the normalized load impedance $z_{L}=\frac{Z_{L}}{Z_{0}}$
Thus,

$$
\Gamma \equiv \frac{V_{0}^{-}}{V_{0}^{+}}=\frac{z_{L}-1}{z_{L}+1}
$$

$$
z_{L}=\frac{1+\Gamma}{1-\Gamma}
$$

Notice the one-to-one mapping. This is very important!
For the current
$\frac{I_{0}^{-}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{V_{0}^{+}}=-\Gamma$
Where does the negative sign come from?

$Z_{0} \equiv \sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}} \quad$ is complex in general.
Z_{L} is complex in general. Thus, Γ is complex in general.
Read the textbook: Section 2-6 overview, 2-6.1

Project

Circuit simulations to transition you from lumped element-based circuit theory

Part 1

Generator: 1 V step, rise time $=0.1 \mathrm{~ns}$. Internal impedance 50Ω.
Plot the two voltages V_{1} and V_{2} for the above two cases.
Hint: You may make mistakes. Do a sanity check by a "back of an envelope" analysis. At the very least, find out the steady state.
Does the simulation give you more or less what you expect?
Ongoing project. Stay tuned for next steps.

ADS Tutorial

Tue $9 / 13$, in class. Bring your lap top.
Follow instructions on Canvas to get access to ADS before the class.
If you need more info or miss the class, see tutorial document on course website. In the document, these is a link to a YouTube video.
Contact TAs for help if needed: GTA Tsotne Kvelashvili tkvelash@utk.edu and UGTA Graham Travis tgraham9@vols.utk.edu

