Z-to-Y Transformation

From experience with circuits, you know that sometimes it is more convenient to talk about admittance than impedance.

For example, if two impedances are in parallel,

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

When Z_1 and Z_2 are complex, the calculation is quite tedious.

But, if we use admittance,

$$Y_1 = \frac{1}{Z_1}, \quad Y_2 = \frac{1}{Z_2}$$

then

$$Y = Y_1 + Y_2$$

A transmission line can be “branched”.

![Diagram of a transmission line branching into two parallel impedances.](image)
Use the Smith Chart to handle admittance

First, let’s define the normalized quantities.

\[Y = G + jB \]

Define the normalized conductance and normalized susceptance:

\[g = \frac{G}{Y_0} = G Z_0 \]
\[b = \frac{B}{Y_0} = B Z_0 \]

Then, the normalized admittance \(y = g + jb \)

Recall that \(z = \frac{1+\Gamma}{1-\Gamma} \), thus \(y = \frac{1}{3} = \frac{1-\Gamma}{1+\Gamma} = \frac{1+(-\Gamma)}{1-(-\Gamma)} = \frac{1+\Gamma e^{j\pi}}{1-\Gamma e^{-j\pi}} \)

Now, do you see how to quickly find \(y \) from a given \(z \) using the Smith Chart?
The reflection coefficient at this point is, of course, $-\Gamma = e^{-j\pi}$.

The “z” corresponding to $-\Gamma$ is y because

$$y = \frac{1 - \Gamma}{1 + \Gamma} = \frac{1 + (-\Gamma)}{1 - (-\Gamma)}$$

Read y from the chart
The “z” corresponding to $-\Gamma$ is y because

$$y = \frac{1}{3} = \frac{1 - \Gamma}{1 + \Gamma} = \frac{1 + (\Gamma)}{1 - (\Gamma)}$$

Sanity check:

$$yz = (0.4 + 0.2j)(2 - j)$$
$$= 0.8 - 0.4j + 0.4j + 0.2$$
$$= 1$$

So the chart is also a tool to find y from z.
You may think about this from another perspective

Recall the quarter wavelength transformer

\[Z_{in} = \frac{Z_b}{Z_L} \]

\[Z_{in} \cdot Z_L = Z_0 \]

\[\frac{Z_{in}}{Z_0} \cdot \frac{Z_L}{Z_0} = 1 \]

\[Z_{in} \cdot Z_L = 1 \]

\[Z_{in} = Z \left(d = \frac{d}{4\lambda} \right) = \frac{1}{3L} \]

If \(Z_L \) is real, \(Z_{in} = z(\lambda/4) \) is real, too.

Where are they on the Smith chart?

Review textbook Section 2-10. Finish Homework 4.
Half a round is $\pi = 180^\circ$, or $\lambda/4$.

The maximum is a quarter wavelength away from the adjacent minimum.

At a minimum or a maximum, $x(d_{\text{min}}) = 0$ or $x(d_{\text{max}}) = 0$

Purely resistive.

If you have a purely resistive $z(d)$, you must have either a maximum or minimum,

At a minimum, the most destructive, $\Gamma_d < 0$

At a maximum, the most constructive, $\Gamma_d > 0$
The quarter wavelength transformer is among the many ways to do impedance matching.

In general, we use a “matching network” to achieve matching.

If Z_L is real, i.e., $Z_L = R_L$ and $X_L = 0$, the matching network is simply quarter-wavelength transformer with $Z_{0z} = \sqrt{Z_{01} R_L}$.

If $Z_L = R_L + jX_L$, $X_L \neq 0$,

Smith chart as the “z-chart”
Let’s compare these two cases.

If $Z_L = R_L$ and $X_L = 0$, you only need to match R_L to Z_{01}. You only need to “turn one knob,” which is Z_{02}. The matching network can be just a quarter-wavelength transformer.

In the more general case, $Z_L = R_L + jX_L$, $X_L \neq 0$, you need to first “tune out” the reactive part, and then match the resistive part. You need to “turn two knobs.” Here, one knob is the distance from the load, and the other is the Z_{02} of the quarter-wavelength transformer.

In both cases, multiple reflection inside matching network, as in anti-reflection coating.

You can find two other knobs to turn.

Review textbook Section 2-11 prelude (before 2-11.1).