ECE 341 Homework #1

P1. Problem 1.1 in Textbook:

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to have a differential pressure \(p(x,t) = 10 \text{ N/m}^2 \) at \(x = 0 \) and \(t = 50 \mu s \). If the reference phase of \(p(x,t) \) is \(36^\circ \), find a complete expression for \(p(x,t) \). The velocity of sound in air is 330 m/s.

P2. Problem 1.2:

Problem 1.2 For the pressure wave described in Example 1-1, plot

(a) \(p(x,t) \) versus \(x \) at \(t = 0 \),
(b) \(p(x,t) \) versus \(t \) at \(x = 0 \).

Be sure to use appropriate scales for \(x \) and \(t \) so that each of your plots covers at least two cycles.

P3. Problem 1.3:

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s, what is the wavelength?

P4. Problem 1.5:

Two waves, \(y_1(t) \) and \(y_2(t) \), have identical amplitudes and oscillate at the same frequency, but \(y_2(t) \) leads \(y_1(t) \) by a phase angle of \(60^\circ \). If

\[
y_1(t) = 4 \cos(2\pi \times 10^3 t),
\]

write down the expression appropriate for \(y_2(t) \) and plot both functions over the time span from 0 to 2 ms.

Note: We often call a sinusoidal function of time a "wave." This is not in a strict sense, as a wave is a function of both time and position. Better to say a "waveform" (as you can see with an oscilloscope) or a "signal."
P5. Problem 1.6:

The height of an ocean wave is described by the function

\[y(x,t) = 1.5 \sin(0.5t - 0.6x) \text{ (m)}. \]

Determine the phase velocity and the wavelength and then sketch \(y(x,t) \) at \(t = 2 \text{ s} \) over the range from \(x = 0 \) to \(x = 2\lambda \).

P6. Problem 1.7:

A wave traveling along a string in the +x-direction is given by

\[y_1(x,t) = A \cos(\omega t - \beta x), \]

where \(x = 0 \) is the end of the string, which is tied rigidly to a wall, as shown in Fig. 1-21 (P1.6). When wave \(y_1(x,t) \) arrives at the wall, a reflected wave \(y_2(x,t) \) is generated. Hence, at any location on the string, the vertical displacement \(y_s \) will be the sum of the incident and reflected waves: