
An Important 2-State System: Spin 1/2

Stern-Gerlach Experiment

Energy of magnet in a 
magnetic field

Force on the magnet

Watch the animation at http://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment
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Particles deflection 
determined by 𝜇𝜇𝑧𝑧.  
In other words, the  
S-G apparatus 
measures 𝜇𝜇𝑧𝑧.

http://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment


Quantum mechanical interpretation of the S-G experiment
Spin angular momentum S is intrinsic to the electron. 
The associated magnetic momentum µ ∝ −S. 

The S-G apparatus measures the projection of S in a direction, say, along the z axis. 
There can only be two outcomes, +ℏ/2 and −ℏ/2, called the eigenvalues. 
Each of them corresponds to an eigenstate. 

The two states are said to be orthogonal, as they are exclusive to each other. 
We labeled |↑〉 and |↓〉 in Dirac notation. 
Or, we may label them |0〉 and |1〉 in the context of quantum computing. 

The electron’s spin state is described by |χ〉 = 𝑐𝑐↑|↑〉 + 𝑐𝑐↓|↓〉, 
where 𝑐𝑐↑ and 𝑐𝑐↓ are complex numbers, called “amplitudes”.
When the 𝜇𝜇𝑧𝑧 of an electron in this state is measured, the 
electron “collapses” to one of the eigenstates; the probability
of collapsing onto |↑〉 is 𝑐𝑐↑ while that onto |↓〉 is 𝑐𝑐↓. 
Therefore, we have normalization |𝑐𝑐↑|2 + |𝑐𝑐↓|2 = 1. 

These are fundamental concepts of quantum mechanics.

Orthogonality does not mean the electron can only be in these two states!
Actually, superposition is among the most important concepts.  



Not exactly representing a spin 
state, since the amplitudes are 
in general complex. 
(There is a better visualization.)

|1〉

|0〉

Such a state is represented by a vector in a 2D space, with 
two basis states |↑〉 and |↓〉. 
This space is different from the one we live in, since the 
projections (amplitudes) are complex. It is a Hilbert space.

The phase of the complex amplitude has profound 
ramifications! 

In the basis of |↑〉 and |↓〉 (or |0〉 and |1〉),

|↑〉 = |0〉 = 1
0 ,    |↓〉 = |1〉 = 0

1 ,    and |χ〉 = 
𝑐𝑐↑
𝑐𝑐↓ . 

An electron spin can be made a qubit. 
Different from a classical bit: 
The states of a classical bit can only 
be at two points in a 2D state space. 
The states of a qubit are richer than 
the blue dashed circle, since the 
amplitudes are complex. Phase 
matters!

Mathematical description of electron spin states
The state is described by |χ〉 = 𝑐𝑐↑|↑〉 + 𝑐𝑐↓|↓〉, where 
the complex amplitudes satisfy |𝑐𝑐↑|2 + |𝑐𝑐↓|2 = 1. 

We say that |↑〉 and |↓〉 form an orthonormal basis set.  
The electron spin is a 2-state system. Any possible spin 
state is in the 2D Hilbert space defined by |↑〉 and |↓〉.
Therefore, |↑〉 and |↓〉 form a complete basis set. 



A measurement of a physical quantity only results in eigenvalues. 
That is, any arbitrary state of a quantum system “collapses” onto an eigenstate
upon measurement. 

In N-dimensional Hilbert space (for an N-state system), 𝑄𝑄 has eigenvalues 𝑞𝑞0, 𝑞𝑞1, 
…, 𝑞𝑞𝑛𝑛, …, 𝑞𝑞𝑁𝑁−1, corresponding to eigenstates |0〉, |1〉, …, |n〉, …, |𝑁𝑁 − 1〉. 

Q|n〉 = 𝑞𝑞𝑛𝑛|n〉. 

Confused? The simple 2-state spin makes it easy to understand. 
Here, the physical quantity is the projection of the spin angular momentum on the z
axis, 𝑆𝑆𝑧𝑧, represented by operator Sz. The eigenvalues are +ℏ/2 and −ℏ/2,
corresponding to eigenstates |↑〉 and |↓〉. 

Sz|↑〉 = (+ℏ/2)|↑〉 and    Sz|↓〉 = (−ℏ/2)|↓〉

Given |↑〉 = |0〉 = 1
0 and |↓〉 = |1〉 = 0

1 , we immediately see 

A physical quantity 𝑄𝑄 is represented by an operator, which is a matrix Q. 

An important hypothesis of quantum mechanics:

A matrix turns a vector into another vector. Q|χ1〉 = |χ2〉. 

Sz =
ℏ
2

1 0
0 −1



σz|↑〉 = |↑〉 and σz|↓〉 = −|↓〉

Sz|↑〉 = (+ℏ/2)|↑〉 and    Sz|↓〉 = (−ℏ/2)|↓〉

|↑〉 = |0〉 = 1
0 and |↓〉 = |1〉 = 0

1 , Sz =
ℏ
2

1 0
0 −1

For convenience, we love dimensionless, integer numbers. We define 
𝑆𝑆𝑧𝑧 = 𝑠𝑠𝑧𝑧 ℏ/2 .

Thus the dimensionless quantity 𝑠𝑠𝑧𝑧 has integer eigenvalues +1 and −1, 
eigenstates |↑〉 and |↓〉, and operator

σz = 1 0
0 −1 .

σz is the Pauli matrix for 𝑠𝑠𝑧𝑧.

Before moving further forward, we need to play with the notation and math.

Given |↑〉 = |0〉 = 1
0 ,    |↓〉 = |1〉 = 0

1 ,    and |χ〉 = 
𝑐𝑐↑
𝑐𝑐↓ , we can find the 

projection |χ〉 on |↑〉 and |↓〉 by calculating inner products:

𝑐𝑐↑ = 1 0
𝑐𝑐↑
𝑐𝑐↓

𝑐𝑐↓ = 0 1
𝑐𝑐↑
𝑐𝑐↓

Transposed conjugate matrices



We defined the kets: |↑〉 = |0〉 = 1
0 ,    |↓〉 = |1〉 = 0

1 ,    and |χ〉 = 
𝑐𝑐↑
𝑐𝑐↓ . 

Now, we define their corresponding bras: 

⟨ |↑ = ⟨ |0 = 1 0 ⟨ |↓ = ⟨ |1 = 0 1 ⟨ |χ = 𝑐𝑐↑∗ 𝑐𝑐↓∗
Conjugate!

Then we can express the ideas in a concise way: 

Orthogonality 

↑ χ = 𝑐𝑐↑Projection ↓ χ = 𝑐𝑐↓

⟩|χ = 𝑐𝑐↑ ⟩| ↑ + 𝑐𝑐↓ ⟩| ↓ = ⟩| ↑ ↑ χ + ⟩| ↓ ↓ χ

= ⟩| ↑ ↑ χ + ⟩| ↓ ↓ χ = ⟩| ↑ ⟨ |↑ + ⟩| ↓ ⟨ |↑ ⟩|χ

↑ ↓ = 0 ↓ ↑ = 0

Not exactly representing a spin 
state, since the amplitudes are 
in general complex. 
(There is a better visualization.)

|1〉

|0〉

⟩|χ

↑ ↑ = 1 ↓ ↓ = 1

χ χ = 𝑐𝑐↑∗ 𝑐𝑐↓∗
𝑐𝑐↑
𝑐𝑐↓ = 𝑐𝑐↑∗𝑐𝑐↑ + 𝑐𝑐↓∗𝑐𝑐↓ = 𝑐𝑐↑ 2 + 𝑐𝑐↓ 2 = 1

⟩| ↑ ⟨ |↑ + ⟩| ↓ ⟨ |↑ = 1 Completeness 

Normalization 



For any real phase 𝜑𝜑, 𝑒𝑒𝑖𝑖𝜑𝜑 ⟩|χ and ⟩|χ describe the same physical state.  

An overall phase has no physical consequence.
What matters is the phase difference between 𝑐𝑐↑ and 𝑐𝑐↓. 

Amplitudes can never be directly measured! 



Sequential Stern-Gerlach (S-G) experiments

Don’t be shy, guess the results!



We already know enough to understand the first experiment:

Every spin in a state 
⟩|χ = 𝑐𝑐↑ ⟩| ↑ + 𝑐𝑐↓ ⟩| ↓

(different 𝑐𝑐↑ and 𝑐𝑐↓
for each)

Those that collapsed on to ⟩| ↑
move on to the next S-G

Those that collapsed on to ⟩| ↓
are thrown out

All electrons entering 2nd S-G 
are in eigenstate ⟩| ↑ , with 
eigenvalue +1 for 𝑠𝑠𝑧𝑧.



What is your intuitive guess about the results of the other two sequential S-G experiments?
What can we learn after seeing the results?



What is your intuitive guess about the results of the other two sequential S-G experiments?
What can we learn after seeing the results?

Half : half again!

The outcome of a 3rd S-G is also half : half!

These results are the same as light polarization experiments, which give us clues.



What is your intuitive guess about the results of the other two sequential S-G experiments?
What can we learn after seeing the results?

Half : half
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| ↓ 〉

|↑〉

⟩| ⊙ or ⟩| ⊗

x

z

y⊙
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|↑〉

Half : half again!

1
2

| ↓ 〉

|↑〉
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⟩| ⊙ or ⟩| ⊗

x

z

y⊙

|⊙〉 ≡ |𝑥𝑥+〉
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|↑〉

Half : half again!

1
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| ↓ 〉

|↑〉

| ↓ 〉

|↑〉

1
2

1
2

From the results, we infer:

↑ ⊙ =
1
2
⟺ ↑ ⊙ 2 =

1
2

↓ ⊗ =
1
2
⟺ ↓ ⊗ 2 =

1
2



| ↓ 〉

|↑〉

⟩| ⊙ or ⟩| ⊗

⟩| ⊗ or ⟩| ⊙

1
2

↑ ⊙ =
1
2
⟺ ↑ ⊙ 2 =

1
2

↓ ⊗ =
1
2
⟺ ↓ ⊗ 2 =

1
2 x

z

y⊙

Not exactly representing spin states, 
since the amplitudes are in general 
complex. 
(There is a better visualization.)

Keep in mind that the overall phase has no physical 
consequences and only the phase difference matters. 
Let 

⟩| ⊙ =
⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑥𝑥 ⟩| ↓

2

Then, ⟩| ⊗ =
⟩| ↑ − 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑥𝑥 ⟩| ↓

2
(required by orthogonality)

We could turn the S-Gs by 90°, and repeat all the experiments for the y projection of spin. 

Define |→〉 ≡ |𝑦𝑦+〉 and |←〉 ≡ |𝑦𝑦−〉

⟩| → =
⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑦𝑦 ⟩| ↓

2
Then, ⟩| ← =

⟩| ↑ − 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑦𝑦 ⟩| ↓
2



Assuming God is fair to all directions, we must have → ⊙ 2 = ⁄1 2. 

⟩| ⊙ =
⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑥𝑥 ⟩| ↓

2
⟩| → =

⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑦𝑦 ⟩| ↓
2

→ ⊙ =
1 + 𝑒𝑒𝑖𝑖 Δ𝜑𝜑𝑥𝑥−Δ𝜑𝜑𝑦𝑦

2

→ ⊙ 2 =
1 + cos Δ𝜑𝜑𝑥𝑥 − Δ𝜑𝜑𝑦𝑦

2
Δ𝜑𝜑𝑥𝑥 − Δ𝜑𝜑𝑦𝑦 = ±

𝜋𝜋
2

This is all we can know. By convention, we set Δ𝜑𝜑𝑥𝑥 = 0. Thus,   

⟩| ⊙ =
⟩| ↑ + ⟩| ↓

2
=

1
2

1
1

⟩| ⊗ =
⟩| ↑ − ⟩| ↓

2
=

1
2

1
−1

| ↓ 〉

|↑〉

⟩| ⊙

⟩| ⊗

1
2

x

z

y⊙



Now we can find the operator σ𝑥𝑥 for 𝑠𝑠𝑥𝑥 such that 

σ𝑥𝑥 ⟩| ⊙ =
1
2
σ𝑥𝑥

1
1 =

+1
2

1
1 = +1 ⟩| ⊙ σ𝑥𝑥 ⟩| ⊗ =

−1
2

1
−1 = −1 ⟩| ⊙

It turns out that σ𝑥𝑥 = 0 1
1 0 .

Exercise: Given the above σ𝑥𝑥, find the eigenvalues and eigenstates. 
Expected answer: The eigenvalues are +1 and −1, and the corresponding 
eigenstates in the basis of |↑〉 and |↓〉 are 

|⊙〉 = |𝑥𝑥+〉 = 1
2

1
1 = 1

2
(|↑〉 + |↓〉) and |⊗〉 = |𝑥𝑥−〉 = 1

2
1
−1 = −1

2
(|↑〉 − |↓〉) .

Exercise: Verify the above.

Do not forget the original physical quantity 𝑆𝑆𝑥𝑥.
Its operator is S𝑥𝑥 = ℏ/2 σ𝑥𝑥.
The eigenvalues of S𝑥𝑥 are indeed +ℏ/2 and −ℏ/2, corresponding to 
eigenstates |⊙〉 and |⊗〉 in the basis of |↑〉 and |↓〉.

The Thu 1/26/2023 class ended here.



Let’s now turn to the operator S𝑦𝑦 = ℏ/2 σ𝑦𝑦.

⟩| ⊙ =
⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑥𝑥 ⟩| ↓

2
⟩| → =

⟩| ↑ + 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑦𝑦 ⟩| ↓
2

Δ𝜑𝜑𝑥𝑥 − Δ𝜑𝜑𝑦𝑦 = ±
𝜋𝜋
2

By convention, we set Δ𝜑𝜑𝑥𝑥 = 0. Thus, Δ𝜑𝜑𝑦𝑦 = ∓𝜋𝜋
2
. Let’s choose Δ𝜑𝜑𝑦𝑦 = + 𝜋𝜋

2
. Then, 

⟩| ← =
⟩| ↑ − 𝑒𝑒𝑖𝑖Δ𝜑𝜑𝑦𝑦 ⟩| ↓

2

⟩| → =
⟩| ↑ + 𝑖𝑖 ⟩| ↓

2
=

1
2

1
i ⟩| ← =

⟩| ↑ − 𝑖𝑖 ⟩| ↓
2

=
1
2

1
−𝑖𝑖 =

−𝑖𝑖
2

𝑖𝑖
1

Therefore, alternatively, ⟩| ← =
1
2

𝑖𝑖
1

(The factor −𝑖𝑖 = 𝑒𝑒−𝑖𝑖 ⁄𝜋𝜋 2 has no physical consequences.)

We then fin that the operator for 𝑠𝑠𝑦𝑦 is σ𝑦𝑦 = 0 −𝑖𝑖
𝑖𝑖 0 .

Note: You are encouraged to do the exercise as done with σ𝑥𝑥, 
thus to verify consistency. 
Our form of σ𝑦𝑦 under our choice of Δ𝜑𝜑𝑦𝑦 = + 𝜋𝜋

2
achieves the 

consistency in our right-hand coordinate system. x

z

y⊙



Before moving further, a few words on notations. 

We use bold italic for vector quantities, e.g., spin angular momentum 𝑺𝑺. 
We use non-bold italic for scalar quantities, e.g., the magnitude 𝑆𝑆 and projection 𝑆𝑆𝑧𝑧 of 𝑺𝑺. 
We use bold non-italic for vector operators, e.g., the operator S for 𝑺𝑺.

In many textbooks (e.g. Townsend), �𝑄𝑄 is the operator for quantity 𝑄𝑄 (�𝑸𝑸 for vector 𝑸𝑸). 
We reserve the “hat” for unit vectors, e.g. �𝒛𝒛. We distinguish operators from the 
corresponding quantities only by font. 

We use non-bold non-italic for scalar operators, e.g., the operator S for 𝑆𝑆, S𝑧𝑧 for 𝑆𝑆𝑧𝑧, etc. 

For spin quantities (in uppercase letters), we define the corresponding dimensionless 
quantities (in lower case letters): 

𝑺𝑺 = 𝑆𝑆𝑥𝑥�𝒙𝒙 + 𝑆𝑆𝑦𝑦�𝒚𝒚 + 𝑆𝑆𝑧𝑧�𝒛𝒛 = 𝒔𝒔
ℏ
2 = 𝑠𝑠𝑥𝑥

ℏ
2

�𝒙𝒙 + 𝑠𝑠𝑦𝑦
ℏ
2

�𝒚𝒚 + 𝑠𝑠𝑧𝑧
ℏ
2

�𝒛𝒛.

The operators for 𝑠𝑠𝑥𝑥, 𝑠𝑠𝑦𝑦, and 𝑠𝑠𝑧𝑧 are Pauli matrices σ𝑥𝑥, σ𝑥𝑥, and σ𝑧𝑧. 
The operator for 𝒔𝒔 is Pauli matrix 𝛔𝛔 = σ𝑥𝑥�𝒙𝒙 + σ𝑦𝑦�𝒚𝒚 + σ𝑧𝑧�𝒛𝒛.

𝐒𝐒 = S𝑥𝑥�𝒙𝒙 + S𝑦𝑦�𝒚𝒚 + S𝑧𝑧�𝒛𝒛 = 𝛔𝛔
ℏ
2 = σ𝑥𝑥

ℏ
2

�𝒙𝒙 + σ𝑦𝑦
ℏ
2

�𝒚𝒚 + σ𝑧𝑧
ℏ
2

�𝒛𝒛.



Operator of a derived quantity

𝝁𝝁 = −
𝑒𝑒
𝑚𝑚
𝑺𝑺

𝜇𝜇𝑧𝑧 = −
𝑒𝑒
𝑚𝑚
𝑆𝑆𝑧𝑧 = −

𝑒𝑒ℏ
2𝑚𝑚

𝑠𝑠𝑧𝑧 = −𝜇𝜇𝐵𝐵𝑠𝑠𝑧𝑧 = ∓𝜇𝜇𝐵𝐵

Given operator Q for physical quantity 𝑄𝑄, the operator for derived quantity 𝑓𝑓 𝑄𝑄 is 𝑓𝑓 Q . 

Simple example: 

The electron’s magnetic moment 

The magnetic moment operator

μ𝑧𝑧 = −
𝑒𝑒
𝑚𝑚 S𝑧𝑧 = −

𝑒𝑒ℏ
2𝑚𝑚σ𝑧𝑧 = −𝜇𝜇𝐵𝐵σ𝑧𝑧

Side note:
Define the Bohr magneton

𝜇𝜇𝐵𝐵 ≡
𝑒𝑒ℏ
2𝑚𝑚

Notice that 𝑠𝑠𝑧𝑧 is dimensionless, 
with eigenvalues ±1.  

The S-G actually measures 𝜇𝜇𝑧𝑧.

Another example:

S𝑧𝑧 =
ℏ
2 𝑠𝑠𝑧𝑧

Electron charge

Electron mass

𝑆𝑆𝑧𝑧2 =
ℏ2

4 𝑠𝑠𝑧𝑧2
𝑠𝑠𝑧𝑧 = ±1 but s𝑧𝑧2 has only one 
possible value! 

The operators S𝑧𝑧2 =
ℏ2

4 σ𝑧𝑧2



Take-home exercise: Use matrix multiplication to show σ𝑥𝑥2 = σ𝑦𝑦2 = σ𝑧𝑧2 = 1 0
0 1 = I.  

The unit matrix I can be written as simply 1.  

σ𝑥𝑥2 = σ𝑦𝑦2 = σ𝑧𝑧2 = 1 0
0 1 = I ⇒ 𝑆𝑆𝑥𝑥2 = 𝑆𝑆𝑦𝑦2 = 𝑆𝑆𝑧𝑧2 = ℏ2/4  

While 𝑆𝑆𝑧𝑧, 𝑆𝑆𝑥𝑥, and 𝑆𝑆𝑦𝑦 cannot be determined at the same time, 𝑆𝑆𝑥𝑥2 = 𝑆𝑆𝑦𝑦2 = 𝑆𝑆𝑧𝑧2 = ℏ2/4 and 

𝑆𝑆2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 = 3
4
ℏ2 always hold, i.e., they are always determined. 

𝑆𝑆2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 =
3
4ℏ

2

Since σ𝑧𝑧2 = 1 0
0 1 = I, any ⟩|χ satisfies σ𝑧𝑧2 ⟩|χ = ⟩|χ . 

Therefore, any ⟩|χ , including |↑〉 and |↓〉, is an eigenstate of σ𝑧𝑧2 with eigenvalue 1. 
Thus |↑〉 and |↓〉 are common eigenstates of σ𝑧𝑧 and σ𝑧𝑧2.

σ2 = σ𝑥𝑥2 + σ𝑦𝑦2 + σ𝑧𝑧2 = 3

The same is true for any σ𝑖𝑖 and σ𝑗𝑗2 as well as σ2. 

More generally, relations between operators in quantum mechanics follow 
those between physical quantities known in classical physics.



Common (or simultaneous) eigenstates

Since σ𝑧𝑧2 = 1 0
0 1 = I, any ⟩|χ satisfies σ𝑧𝑧2 ⟩|χ = ⟩|χ . 

Therefore, any ⟩|χ , including |↑〉 and |↓〉, is an eigenstate of σ𝑧𝑧2 with eigenvalue 1. 

Thus |↑〉 and |↓〉 are common eigenstates of σ𝑧𝑧 and σ𝑧𝑧2.

σ𝑧𝑧 ⟩| ↑ = ⟩| ↑ σ𝑧𝑧2 ⟩| ↑ = ⟩| ↑

σ𝑧𝑧2σ𝑧𝑧 ⟩| ↑ = σ𝑧𝑧2 ⟩| ↑ = ⟩| ↑ σ𝑧𝑧σ𝑧𝑧2 ⟩| ↑ = σ𝑧𝑧 ⟩| ↑ = ⟩| ↑

σ𝑧𝑧2σ𝑧𝑧 = σ𝑧𝑧σ𝑧𝑧2

For two physical quantities 𝑃𝑃 and 𝑄𝑄 to have common eigenstates, the operators 
must satisfy PQ = QP.



Common (or simultaneous) eigenstates

For an electron in |↑〉, 𝜎𝜎𝑧𝑧|↑〉 = |↑〉. From 𝜎𝜎𝑥𝑥|↑〉 = |↓〉 = 1
2

(|𝑥𝑥+〉 − |𝑥𝑥−〉), which is neither 
|𝑥𝑥+〉 nor |𝑥𝑥−〉, we see that the eigenstate |↑〉 of 𝜎𝜎𝑧𝑧 is not an eigenstate of 𝜎𝜎𝑥𝑥.  Therefore, 
𝑆𝑆𝑧𝑧 and 𝑆𝑆𝑥𝑥 cannot be determined at the same time. 𝑆𝑆𝑧𝑧 and 𝑆𝑆𝑥𝑥 do not have common (or 
simultaneous) eigenstates. 

Since σ𝑧𝑧|↑〉 = |↑〉, we can write σ𝑥𝑥|↑〉 = |↓〉 = σ𝑥𝑥 (σ𝑧𝑧|↑〉) = (σ𝑥𝑥σ𝑧𝑧)|↑〉, therefore σ𝑥𝑥σ𝑧𝑧|↑〉 = |↓〉.
On the other hand, σ𝑧𝑧σ𝑥𝑥|↑〉 = 𝜎𝜎𝑧𝑧 (𝜎𝜎𝑥𝑥 |↑〉) =σ𝑧𝑧|↓〉 = −|↓〉.

Apparently,σ𝑥𝑥σ𝑧𝑧 ≠ σ𝑧𝑧σ𝑥𝑥.  It appears that σ𝑥𝑥σ𝑧𝑧= −σ𝑧𝑧σ𝑥𝑥.

Exercise: Use matrix multiplication to show σ𝑥𝑥σ𝑧𝑧= −σ𝑧𝑧σ𝑥𝑥 is generally true.



Energy and time evolution of a quantum system

x

z

y⊙𝑩𝑩 = −𝐵𝐵�𝒛𝒛

Spin angular momentum 𝑺𝑺

𝝁𝝁 = −
𝑒𝑒
𝑚𝑚
𝑺𝑺 = −𝜇𝜇𝐵𝐵𝒔𝒔

𝐸𝐸 = −𝝁𝝁 � 𝑩𝑩 = −𝜇𝜇𝑧𝑧 −𝐵𝐵 = 𝜇𝜇𝑧𝑧𝐵𝐵 = −𝜇𝜇𝐵𝐵𝑠𝑠𝑧𝑧𝐵𝐵

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩𝜓𝜓 𝑡𝑡 = H| ⟩𝜓𝜓 𝑡𝑡

An isolated electron in free space will 
remain in a quantum state forever. 
Quite boring and not useful. 
We can turn some dynamics by just 
apply a magnetic field.

Energy of a magnetic moment :

In this system (an isolated electron in B), 𝐸𝐸, 𝜇𝜇𝑧𝑧, and 𝑠𝑠𝑧𝑧 have common eigenstates. 

The energy of a system is so important, that we give its operator a special name: 
the Hamiltonian, H. 
The dynamics of the system is described by the Schrödinger equation

In the 2-state system, a common eigenstate of 𝐸𝐸, 𝜇𝜇𝑧𝑧, and 𝑠𝑠𝑧𝑧 is a steady-state 
solution to this equation, which we call a stationary state. 

𝐸𝐸↑ = −𝜇𝜇𝐵𝐵𝐵𝐵 and 𝐸𝐸↓ = 𝜇𝜇𝐵𝐵𝐵𝐵

This would be a familiar type of differential equation, if H were a constant (instead of 

an operator). The steady-state or stationary solution would be | ⟩𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
H
ℏ𝑡𝑡| ⟩𝜓𝜓 0 .



H| ⟩𝑛𝑛 = 𝐸𝐸𝑛𝑛| ⟩𝑛𝑛 .

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩𝜓𝜓 𝑡𝑡 = H| ⟩𝜓𝜓 𝑡𝑡

| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑖𝑖ℏ −𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ

𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛 = 𝑒𝑒−𝑖𝑖

𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡𝐸𝐸𝑛𝑛| ⟩𝑛𝑛 = 𝑒𝑒−𝑖𝑖

𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡H| ⟩𝑛𝑛 = H𝑒𝑒−𝑖𝑖

𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛 = H| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡

For the stationary state, the phase factor has no physical consequences!
| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 and | ⟩𝑛𝑛 describe exactly the same state. 
Once in a stationary state, stay in a stationary state (as long as H is t-independent).

By definition, the n-th eigenstate, | ⟩𝑛𝑛 , of H satisfies

Now we show that 

are solutions to the Schrödinger equation

| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛

insertinsert
H| ⟩𝑛𝑛 = 𝐸𝐸𝑛𝑛| ⟩𝑛𝑛

insert

H is t-independent

| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛

These terms mean the same thing: 
A steady-state solution to the Schrödinger equation, a stationary state, 
an eigenstate of the Hamiltonian

But, a general state | ⟩𝜓𝜓 𝑡𝑡 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛 𝑡𝑡 |n〉 evolves in time!! Next we exemplify this with a spin.



| ⟩χ 𝑡𝑡 = 𝑐𝑐↑ 𝑡𝑡 | ⟩↑ + 𝑐𝑐↓ 𝑡𝑡 | ⟩↓ 𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩χ 𝑡𝑡 = H| ⟩χ 𝑡𝑡
insert

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

| ⟩χ 𝑡𝑡 = 𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑐𝑐↑ 𝑡𝑡 | ⟩↑ +

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑐𝑐↓ 𝑡𝑡 | ⟩↓

H| ⟩χ 𝑡𝑡 = 𝑐𝑐↑ 𝑡𝑡 H| ⟩↑ + 𝑐𝑐↓ 𝑡𝑡 H| ⟩↓ = −𝜇𝜇𝐵𝐵𝐵𝐵𝑐𝑐↑ 𝑡𝑡 | ⟩↑ + 𝜇𝜇𝐵𝐵𝐵𝐵𝑐𝑐↓ 𝑡𝑡 | ⟩↓

𝐸𝐸↑ = −𝜇𝜇𝐵𝐵𝐵𝐵 and 𝐸𝐸↓ = 𝜇𝜇𝐵𝐵𝐵𝐵

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑐𝑐↑ 𝑡𝑡 = 𝑖𝑖

𝜇𝜇𝐵𝐵𝐵𝐵
ℏ 𝑐𝑐↑ 𝑡𝑡 = 𝑖𝑖

𝜔𝜔
2 𝑐𝑐↑ 𝑡𝑡

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑐𝑐↓ 𝑡𝑡 = −𝑖𝑖

𝜇𝜇𝐵𝐵𝐵𝐵
ℏ 𝑐𝑐↓ 𝑡𝑡 = −𝑖𝑖

𝜔𝜔
2 𝑐𝑐↓ 𝑡𝑡

𝑐𝑐↑ 𝑡𝑡 = 𝑐𝑐↑ 0 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 𝑐𝑐↓ 𝑡𝑡 = 𝑐𝑐↓ 0 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡

Define  𝜔𝜔 =
2𝜇𝜇𝐵𝐵𝐵𝐵
ℏ

Time evolution of a spin state

insert

and

and



Time evolution of a spin state

𝑐𝑐↑ 𝑡𝑡 = 𝑐𝑐↑ 0 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 𝑐𝑐↓ 𝑡𝑡 = 𝑐𝑐↓ 0 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡

| ⟩χ 𝑡𝑡 = 𝑐𝑐↑ 𝑡𝑡 | ⟩↑ + 𝑐𝑐↓ 𝑡𝑡 | ⟩↓

Define | ⟩χ ≡ | ⟩χ 0 = 𝑐𝑐↑ 0 | ⟩↑ + 𝑐𝑐↓ 0 | ⟩↓ ≡ 𝑐𝑐↑| ⟩↑ + 𝑐𝑐↓| ⟩↓ . In the matrix form, we have 

𝜔𝜔 =
2𝜇𝜇𝐵𝐵𝐵𝐵
ℏ

| ⟩χ 0 =
𝑐𝑐↑
𝑐𝑐↓

| ⟩χ 𝑡𝑡 = 𝑐𝑐↑𝑒𝑒
𝑖𝑖𝜔𝜔2𝑡𝑡

𝑐𝑐↓𝑒𝑒
−𝑖𝑖𝜔𝜔2𝑡𝑡

.and

We immediately see | ⟩χ 𝑡𝑡 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

𝑐𝑐↑
𝑐𝑐↓ = 𝑒𝑒𝑖𝑖

𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

| ⟩χ 0

This time evolution is vividly visualized with the Bloch sphere. 



The Bloch Sphere: visualizing a 2-level system state

| ↓ 〉

|↑〉

⟩| ⊙

⟩| ⊗

1
2

x

z

y⊙

Not exactly representing a spin state, since 
the amplitudes are in general complex. 
(There is a better visualization.)

We used a not-so-good visualization:

Here comes the better visualization.

| ⟩χ = 𝑐𝑐↑| ⟩↑ + 𝑐𝑐↓| ⟩↓ = cos
𝜃𝜃
2

| ⟩↑ + 𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

| ⟩↓ =
cos

𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

• Normalization condition automatically satisfied. 
• Phase difference between 𝑐𝑐↑ and 𝑐𝑐↓ is 𝜑𝜑. (Overall phase meaningless) 
• Any possible | ⟩χ is represented by a point on the sphere. A complete 

visualization of 2D Hilbert space. 

𝑐𝑐↑ = cos
𝜃𝜃
2

𝑐𝑐↓ = sin
𝜃𝜃
2andDefine real



Define | ⟩χ ≡ | ⟩χ 0 = 𝑐𝑐↑ 0 | ⟩↑ + 𝑐𝑐↓ 0 | ⟩↓ ≡ 𝑐𝑐↑| ⟩↑ + 𝑐𝑐↓| ⟩↓ with real 𝑐𝑐↑ and 𝑐𝑐↓.

𝑐𝑐↑ = cos
𝜃𝜃
2

𝑐𝑐↓ = sin
𝜃𝜃
2

| ⟩χ 𝑡𝑡 =
𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 cos

𝜃𝜃
2

𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡 sin

𝜃𝜃
2

= 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡

cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 sin
𝜃𝜃
2

𝜃𝜃

𝜔𝜔𝑡𝑡

| ⟩χ 𝑡𝑡| ⟩χ 0

𝑥𝑥

𝑦𝑦

𝑧𝑧

Visualize the time evolution of a spin state with Bloch sphere

Physically meaningless; thrown away.

Note 
A point on the Bloch sphere represents a state, not
the spin angular momentum 𝑺𝑺. 
But the rotation at 𝜔𝜔 = ⁄2𝜇𝜇𝐵𝐵𝐵𝐵 ℏ is reminiscent of a 
semi-classical picture of the spin in a magnetic field! 

𝜔𝜔 =
2𝜇𝜇𝐵𝐵𝐵𝐵
ℏ

| ⟩↑

| ⟩↓

and

| ⟩χ 𝑡𝑡 = 𝑐𝑐↑𝑒𝑒
𝑖𝑖𝜔𝜔2𝑡𝑡

𝑐𝑐↓𝑒𝑒
−𝑖𝑖𝜔𝜔2𝑡𝑡

We immediately see 𝜑𝜑 𝑡𝑡 = −𝜔𝜔𝑡𝑡. By defining 
real 𝑐𝑐↑ and 𝑐𝑐↓, we set 𝜑𝜑 0 = 0.



The total spin angular momentum always satisfies 𝑺𝑺2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 = 3ℏ2/4. 
This can be loosely interpreted as the magnitude of the total spin angular momentum is 

always S = |S| = 3
2
ℏ.  A semi-classical picture of spin thus emerges:

Without disturbance from the environment, 
an electron stays forever is a state (|↑〉 or |↓〉). 

Recall the following:

σ𝑥𝑥2 = σ𝑦𝑦2 = σ𝑧𝑧2 = 1 0
0 1 = I ⇒ 𝑆𝑆𝑥𝑥2 = 𝑆𝑆𝑦𝑦2 = 𝑆𝑆𝑧𝑧2 = ℏ2/4  

𝑆𝑆2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 =
3
4
ℏ2σ2 = σ𝑥𝑥2 + σ𝑦𝑦2 + σ𝑧𝑧2 = 3

In DC magnetic field B = −𝐵𝐵�𝐳𝐳,  
|↑〉 and |↓〉 are the low- and high-
energy states, respectively. 

z

y⊙x
ℏ/2

ℏ/2

B

𝑺𝑺

𝑺𝑺

But, field B does not 
align the spins with it; 
spins precess around B. 

The vector for state | ⟩χ 𝑡𝑡 in the Bloch sphere visualization 
is somehow related to 𝑺𝑺. 

A semi-classical picture of the spin 



A semi-classical picture of the spin 

A precessing gyroscope. See animation at 
https://en.wikipedia.org/wiki/Top. The 
gyro is “spinning down” in the animation.

First, the classical spin. 

Point mass motion 
analogy

Rigid body 
rotation

τ = dL/dt

p = mv L = Iω

F = dp/dt
moment of inertia

angular momentum

torque

L

G

θ

⊙τ

ω ω

dL = τ dt dL = τ dt

Lxy + dLLxyLxy

⊙τ⊙τ

The Tue 1/31/2023 class ended here.

https://en.wikipedia.org/wiki/Top


By definition, the magnetic moment

µ = − (e/2m)L τ = µ × B τ = (e/2m)LBsinθ

Notice that τ ∝ L here, unlike the gravitation case.

current

Without external disturbance, field B cannot change 
𝐿𝐿𝑧𝑧 or 𝐿𝐿𝑥𝑥𝑥𝑥. L (and µ) precesses around B. 
The field B alone does not align L (or µ) to itself.  

A second classical example: an orbiting classical electron in magnetic field

L

B

θ

⨀τ = µ × B

µ

Lxy

Unlike the gyro in gravitational field, the orbit precesses in 
the same direction for both 𝑳𝑳 � 𝑩𝑩 > 0 and 𝑳𝑳 � 𝑩𝑩 < 0 cases. 

The precession frequency

𝜔𝜔𝑝𝑝 =
⁄𝑑𝑑𝑑𝑑 𝐿𝐿𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1
𝐿𝐿 sin𝜃𝜃 =

𝜏𝜏
𝐿𝐿 sin𝜃𝜃 =

𝑒𝑒
2𝑚𝑚

𝐿𝐿 Bsin𝜃𝜃
𝐿𝐿 sin𝜃𝜃 =

𝑒𝑒
2𝑚𝑚 𝐵𝐵 =

1
ℏ 𝜇𝜇𝐵𝐵𝐵𝐵

𝜇𝜇𝐵𝐵 ≡
𝑒𝑒ℏ
2𝑚𝑚Details FYI 𝐿𝐿 = 𝑚𝑚𝑅𝑅2𝜔𝜔𝑜𝑜 ⟹ 𝜔𝜔𝑜𝑜 = ⁄𝐿𝐿 𝑚𝑚𝑅𝑅2

Orbit radius
Orbiting angular frequency

𝝁𝝁 = 𝜋𝜋𝑅𝑅2 −𝑒𝑒
𝝎𝝎𝑜𝑜
2𝜋𝜋 = −

𝑒𝑒
2𝑅𝑅

2 𝑳𝑳
𝑚𝑚𝑅𝑅2 = −

𝑒𝑒
2𝑚𝑚𝑳𝑳

insert



𝝁𝝁 = −
𝑒𝑒
𝑚𝑚
𝑺𝑺

Unlike the orbit magnetic moment µ = − (e/2m)L, 
the electron’s spin magnetic moment is 

S

B

θ

⨀τ = µ × B

µ

𝜔𝜔𝑝𝑝 =
𝑒𝑒
𝑚𝑚

𝐵𝐵 =
2
ℏ
𝜇𝜇𝐵𝐵𝐵𝐵 𝜇𝜇𝐵𝐵 ≡

𝑒𝑒ℏ
2𝑚𝑚

z

y⊙x
ℏ/2

ℏ/2

B
𝑺𝑺

𝑺𝑺

The semi-classical picture of electron spin 

Following the same procedure as for the orbit moment, 
the precession frequency

Precession direction same for 𝑺𝑺 � 𝑩𝑩 > 0 and 𝑺𝑺 � 𝑩𝑩 < 0. 

We have just arrived at the 
semi-classical picture:

𝑺𝑺2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 = 3 ⁄ℏ 2 2. 

Loosely, S = |S| = 3
2
ℏ.  

𝑺𝑺 precesses around −𝑩𝑩 at angular frequency 𝜔𝜔 = ⁄2𝜇𝜇𝐵𝐵𝐵𝐵 ℏ, 
same as the spin state rotates on the Bloch sphere. 
Can the vector there represent the spin itself?

Only two possible states: up and down. 



Bloch sphere visualization of the spin: a better semi-classical picture

First, we give the conclusions, to be rationalized later.
The state vector can represent the average value of spin, 𝑺𝑺 .

Interpretation of “average” of something of 
a single electron: averaged over many, many 
measurements of electrons in the same state, 
or manifested by some macroscopic quantity 
of a system made of many, many electrons 
in the same spin state.

We have defined a set of dimensionless quantities, such 
that: 𝑺𝑺 = 𝒔𝒔 ℏ/2 , 𝑆𝑆 = 𝑠𝑠 ℏ/2 , 𝑆𝑆𝑧𝑧 = 𝑠𝑠𝑧𝑧 ℏ/2 , and so on.

𝑑𝑑𝑺𝑺
𝑑𝑑𝑑𝑑 = 𝝁𝝁 × 𝑩𝑩

𝝁𝝁 = −
𝑒𝑒
𝑚𝑚𝑺𝑺

𝑑𝑑𝑺𝑺
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚𝑺𝑺 × 𝑩𝑩

𝑑𝑑𝝁𝝁
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚𝝁𝝁 × 𝑩𝑩

The Landau–Lifshitz–Gilbert (LLG) equation for 
a single electron or non-interacting electrons in 
the same spin state under magnetic field 𝑩𝑩. 

𝜃𝜃

𝜔𝜔𝑡𝑡

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑺𝑺 𝑡𝑡𝑺𝑺 0

𝑑𝑑 𝑺𝑺
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚

𝑺𝑺 × 𝑩𝑩

𝑑𝑑 𝝁𝝁
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚 𝝁𝝁 × 𝑩𝑩



𝜃𝜃

𝜔𝜔𝑡𝑡

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒔𝒔 𝑡𝑡𝒔𝒔 0

Bloch sphere visualization of the spin: a better semi-classical picture

With the radius of the Bloch sphere set to 1, the vector 
represents the dimensionless spin 𝒔𝒔 𝑡𝑡 . 
We may also set the radius to ℏ/2, thus the vector 
represents 𝑺𝑺 𝑡𝑡 . 

𝑺𝑺 𝑡𝑡 = 𝒔𝒔 𝑡𝑡 ℏ/2

𝑺𝑺 𝑡𝑡 = 𝒔𝒔 𝑡𝑡 ℏ/2

𝑑𝑑 𝑺𝑺
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚 𝑺𝑺 × 𝑩𝑩

𝑑𝑑 𝝁𝝁
𝑑𝑑𝑑𝑑 = −

𝑒𝑒
𝑚𝑚 𝝁𝝁 × 𝑩𝑩

Both 𝑺𝑺 𝑡𝑡 and the corresponding magnetic moment 
𝝁𝝁 𝑡𝑡 follow the same differential equation:

The Landau–Lifshitz–Gilbert (LLG) equation for a single electron or 
non-interacting electrons in the same spin state, under magnetic field 𝑩𝑩
but otherwise isolated (no other interaction with the world).  

To rationalize this graphical representation of 𝑺𝑺 or 𝒔𝒔 , we need to understand the average. 



Homework 1

𝜃𝜃

−𝜑𝜑

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒔𝒔 𝑡𝑡𝒔𝒔 0

Now we have learned that the vector in the Bloch sphere 
chart visualizing spin state 

| ⟩χ =
cos

𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

also represents the average value of the spin of this state. 
From the figure to the right, we see

𝒔𝒔 = �𝒙𝒙 sin𝜃𝜃 cos𝜑𝜑 + �𝒚𝒚 sin𝜃𝜃 sin𝜑𝜑 + �𝒛𝒛 cos𝜃𝜃
Obviously, the projection of 𝒔𝒔 onto �𝒛𝒛 is 𝑠𝑠𝑧𝑧 = cos𝜃𝜃. 

You see, −1 ≤ 𝑠𝑠𝑧𝑧 ≤ 1 while 𝑠𝑠𝑧𝑧 = ±1. 

Pretend that you have not been taught about the above. Prove that 𝑠𝑠𝑧𝑧 = cos𝜃𝜃 for spin state 
| ⟩χ characterized by 𝜃𝜃 and 𝜑𝜑. 



Average values
Example: Find the average value 𝑠𝑠𝑧𝑧 of a spin state | ⟩χ = 𝑐𝑐↑| ⟩↑ + 𝑐𝑐↓| ⟩↓ . 

Obviously, 𝑠𝑠𝑧𝑧 = 𝑐𝑐↑ 2 +1 + 𝑐𝑐↓ 2 −1 = 𝑐𝑐↑ 2 − 𝑐𝑐↓ 2

In general, the average (expected) value of 𝑄𝑄, 𝑄𝑄 = ⟨ |χ Q ⟩|χ . 
We now show the special example 𝑠𝑠𝑧𝑧 = ⟨ |χ σ𝑧𝑧 ⟩|χ :

⟨ |χ σ𝑧𝑧 ⟩|χ = ⟨ |↑ 𝑐𝑐↑∗ + ⟨ |↓ 𝑐𝑐↓∗ +1 𝑐𝑐↑| ⟩↑ + −1 𝑐𝑐↓| ⟩↓

= +1 𝑐𝑐↑∗𝑐𝑐↑ + −1 𝑐𝑐↓∗𝑐𝑐↓ = 𝑐𝑐↑ 2 − 𝑐𝑐↓ 2 = 𝑠𝑠𝑧𝑧

This is obvious only in a special case, where we seek 𝑠𝑠𝑧𝑧 in the basis made 
of the eigenstates of 𝑠𝑠𝑧𝑧. 
In general, we calculate 𝑄𝑄 = ⟨ |χ Q ⟩|χ not in the basis of eigenstates of 𝑄𝑄. 
For example, we may calculate 𝑄𝑄 in the basis set | ⟩↑ and | ⟩↓ , i.e. 
eigenstates of 𝑠𝑠𝑧𝑧. 
To show the general applicability of 𝑄𝑄 = ⟨ |χ Q ⟩|χ , we need to talk about 
basis changes. 



Basis change

⟩| ⊙ =
⟩| ↑ + ⟩| ↓

2
=

1
2

1
1

⟩| ⊗ =
⟩| ↑ − ⟩| ↓

2
=

1
2

1
−1

| ↓ 〉

|↑〉

⟩| ⊙

⟩| ⊗

1
2

x

z

y⊙

⟩| ↑ =
⟩| ⊙ + ⟩| ⊗

2
=

1
2

1
0

⟩| ↑ =
⟩| ⊙ − ⟩| ⊗

2
=

1
2

0
1

σ𝑧𝑧 ⟩| ⊙ =
σ𝑧𝑧 ⟩| ↑ + ⟩σ𝑧𝑧| ↓

2
=

⟩| ↑ − ⟩| ↓
2

= ⟩| ⊗

In-class  exercise 

σ𝑧𝑧 ⟩| ⊗ =
σ𝑧𝑧 ⟩| ↑ − σ𝑧𝑧 ⟩| ↓

2
=

⟩| ↑ + ⟩| ↓
2

= ⟩| ⊙



σ𝑧𝑧 ⟩| ⊙ =
σ𝑧𝑧 ⟩| ↑ + ⟩σ𝑧𝑧| ↓

2
=

⟩| ↑ − ⟩| ↓
2

⟨ |⊙ σ𝑧𝑧 ⟩| ⊙ =
⟨ |↑ + ⟨ |↓

2
⟩| ↑ − ⟩| ↓

2
=

↑ ↑ + ↓ ↑ − ↑ ↓ − ↓ ↓
2

= 0

⟨ |↑ = ⟨ |0 = 1 0 ⟨ |↓ = ⟨ |1 = 0 1

↑ ↓ = 0 ↓ ↑ = 0

↑ ↑ = 1 ↓ ↓ = 1

⟨ |⊗ σ𝑧𝑧 ⟩| ⊗ = ?

What do the above mean? 

Similarly, ↑ σ𝑥𝑥 ↑ = ?  And, in general, ⟨ |χ σ𝑥𝑥 ⟩|χ = ? 



We can find ⟨ |χ σ𝑥𝑥 ⟩|χ in the basis of ⟩| ⊙ and ⟩| ⊗ , where

⟩|χ = 𝑐𝑐⊙ ⟩|⊙ + 𝑐𝑐⊗ ⟩|⊗

Following the same procedure as finding ⟨ |χ σ𝑧𝑧 ⟩|χ in the basis of ⟩|↑ and ⟩|↓ , we 
immediately see 𝑠𝑠𝑥𝑥 = ⟨ |χ σ𝑥𝑥 ⟩|χ for arbitrary ⟩|χ .

For physical quantity 𝑄𝑄, there exist two eigenstates ��𝑞𝑞1 and ��𝑞𝑞2 , corresponding to 
eigenvalues 𝑞𝑞1 and 𝑞𝑞2, respectively. Thus, 

⟩|χ = 𝑐𝑐1 ��𝑞𝑞1 + 𝑐𝑐2 ��𝑞𝑞2

Following the same procedure as finding ⟨ |χ σ𝑧𝑧 ⟩|χ in the basis of ⟩|↑ and ⟩|↓ , we see 
𝑄𝑄 = ⟨ |χ 𝑄𝑄 ⟩|χ for arbitrary ⟩|χ by finding ⟨ |χ 𝑄𝑄 ⟩|χ in the basis of ��𝑞𝑞1 and ��𝑞𝑞2 :

⟨ |χ 𝑄𝑄 ⟩|χ = ⟨ |𝑞𝑞1 𝑐𝑐1∗ + ⟨ |𝑞𝑞2 𝑐𝑐2∗ 𝑞𝑞1𝑐𝑐1| ⟩𝑞𝑞1 + 𝑞𝑞2𝑐𝑐2| ⟩𝑞𝑞2 = 𝑐𝑐1 2𝑞𝑞1 + 𝑐𝑐2 2𝑞𝑞2 = 𝑄𝑄



𝜃𝜃

𝜑𝜑

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒔𝒔

Proof that the vector in the Bloch sphere chart 
visualizing spin state | ⟩χ also represents the 
average value of the spin of this state, 𝒔𝒔 .

Read offline 

𝒔𝒔 = ⟨ |χ 𝛔𝛔 ⟩|χ = ⟨ |χ σ𝑥𝑥�𝒙𝒙 + σ𝑦𝑦�𝒚𝒚 + σ𝑧𝑧�𝒛𝒛 ⟩|χ

= �𝒙𝒙 cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

0 1
1 0

cos
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

+�𝒚𝒚 cos
𝜃𝜃
2 𝑒𝑒−𝑖𝑖𝜑𝜑sin

𝜃𝜃
2

0 −𝑖𝑖
𝑖𝑖 0

cos
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

+ �𝒛𝒛 cos
𝜃𝜃
2 𝑒𝑒−𝑖𝑖𝜑𝜑sin

𝜃𝜃
2

1 0
0 −1

cos
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

= �𝒙𝒙 cos
𝜃𝜃
2 𝑒𝑒−𝑖𝑖𝜑𝜑sin

𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

cos
𝜃𝜃
2

+ �𝒚𝒚 cos
𝜃𝜃
2 𝑒𝑒−𝑖𝑖𝜑𝜑sin

𝜃𝜃
2

−𝑖𝑖 𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

𝑖𝑖 cos
𝜃𝜃
2

+�𝒛𝒛 cos
𝜃𝜃
2 𝑒𝑒−𝑖𝑖𝜑𝜑sin

𝜃𝜃
2

cos
𝜃𝜃
2

−𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2



= �𝒙𝒙 cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

cos
𝜃𝜃
2

+ �𝒚𝒚 cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

−𝑖𝑖 𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

𝑖𝑖 cos
𝜃𝜃
2

+�𝒛𝒛 cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

cos
𝜃𝜃
2

−𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

= �𝒙𝒙 𝑒𝑒𝑖𝑖𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝜑𝜑 cos
𝜃𝜃
2

sin
𝜃𝜃
2

+ �𝒚𝒚 −𝑖𝑖𝑒𝑒𝑖𝑖𝜑𝜑 + 𝑖𝑖𝑒𝑒−𝑖𝑖𝜑𝜑 cos
𝜃𝜃
2

sin
𝜃𝜃
2

+ �𝒛𝒛 cos2
𝜃𝜃
2
− sin2

𝜃𝜃
2

= �𝒙𝒙 2 cos𝜑𝜑
1
2 sin𝜃𝜃 + �𝒚𝒚 −𝑖𝑖 2𝑖𝑖 sin𝜑𝜑

1
2 sin𝜃𝜃 + �𝒛𝒛 cos𝜃𝜃

= �𝒙𝒙 sin𝜃𝜃 cos𝜑𝜑 + �𝒚𝒚 sin𝜃𝜃 sin𝜑𝜑 + �𝒛𝒛 cos𝜃𝜃

(this step copied from last page)

This means that the average spin, 𝒔𝒔 = ⟨ |χ 𝛔𝛔 ⟩|χ , of a 
spin state 

| ⟩χ =
cos

𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑sin
𝜃𝜃
2

is a unit vector of polar angle 𝜃𝜃 and azimuthal angle 𝜑𝜑. 
QED.

𝜃𝜃

𝜑𝜑

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒔𝒔



Time evolution revisited

| ⟩χ 𝑡𝑡 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

𝑐𝑐↑
𝑐𝑐↓ = 𝑒𝑒𝑖𝑖

𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

| ⟩χ 0 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 1 0

0 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡
| ⟩χ 0

=
𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 cos

𝜃𝜃
2

𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡 sin

𝜃𝜃
2

= 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡

cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 sin
𝜃𝜃
2

Physically insignificant.

Whether or not the physically insignificant factor 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 is thrown out, we can write 

| ⟩χ 𝑡𝑡 = U 𝑡𝑡 | ⟩χ 0
with the operator 

U 𝑡𝑡 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

or U 𝑡𝑡 = 1 0
0 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 .

In the former, 𝑐𝑐↑ 𝑡𝑡 and 𝑐𝑐↓ 𝑡𝑡 rotate at angular frequencies 𝜔𝜔
2

and −𝜔𝜔
2

, 
respectively. In the latter, 𝑐𝑐↑ 𝑡𝑡 is fixed while 𝑐𝑐↓ 𝑡𝑡 rotates at angular 
frequency 𝜔𝜔. Either way, 𝑐𝑐↓ 𝑡𝑡 rotates at angular frequency 𝜔𝜔 with 
regard to 𝑐𝑐↓ 𝑡𝑡 , and ℏ𝜔𝜔 is the difference between the two energy 
eigenvalues (levels). 

ℏ𝜔𝜔

Ground state | ⟩↑

| ⟩↓

0

ℏ𝜔𝜔

−
ℏ𝜔𝜔
2

ℏ𝜔𝜔
2



| ⟩χ 𝑡𝑡 = 𝑐𝑐↑ 𝑡𝑡 | ⟩↑ + 𝑐𝑐↓ 𝑡𝑡 | ⟩↓

| ⟩χ 𝑡𝑡 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

𝑐𝑐↑
𝑐𝑐↓ = 𝑒𝑒𝑖𝑖

𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

| ⟩χ 0 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 1 0

0 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡
| ⟩χ 0

=
𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 cos

𝜃𝜃
2

𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡 sin

𝜃𝜃
2

= 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡

cos
𝜃𝜃
2

𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 sin
𝜃𝜃
2

Physically insignificant.

| ⟩χ 𝑡𝑡 = U 𝑡𝑡 | ⟩χ 0

U 𝑡𝑡 = 𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 0

0 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

or U 𝑡𝑡 = 1 0
0 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 .

Either way, 𝑐𝑐↓ 𝑡𝑡 rotates at angular frequency 𝜔𝜔 with regard to 𝑐𝑐↓ 𝑡𝑡 , thus
| ⟩χ 𝑡𝑡 rotates at 𝜔𝜔 around �𝒛𝒛, as visualized in the Bloch sphere chart. 

with the operator 

The time evolution is said to be a unitary transformation, since χ 𝑡𝑡 χ 𝑡𝑡 = 1
always holds. The operator U 𝑡𝑡 is a unitary matrix. 

Furthermore, U 𝑡𝑡 + ∆𝑡𝑡 = U ∆𝑡𝑡 U 𝑡𝑡 .



𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩𝜓𝜓 𝑡𝑡 = H| ⟩𝜓𝜓 𝑡𝑡 𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩𝜓𝜓 𝑡𝑡 = −𝑖𝑖
1
ℏ

H| ⟩𝜓𝜓 𝑡𝑡 | ⟩𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝑡𝑡
ℏH| ⟩𝜓𝜓 𝑡𝑡

The unitary transformation | ⟩χ 𝑡𝑡 = U 𝑡𝑡 | ⟩χ 0 is naturally expected from 
the Schrödinger equation: 

Keeping in mind that 𝑒𝑒−𝑖𝑖
𝑡𝑡
ℏH is an operator, we immediately see 

U 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝑡𝑡
ℏH

But, what does the exponential function of an operator mean? 
This is to be explained later, when we go beyond 2-state systems.  
You may want to figure this out. Here are two hints: 
1. Consider | ⟩𝜓𝜓 𝑡𝑡 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛 𝑡𝑡 |n〉. 

2. Use 𝑒𝑒−𝑖𝑖
𝑡𝑡
ℏH = 1 + −𝑖𝑖 𝑡𝑡

ℏ
H + 1

2
−𝑖𝑖 𝑡𝑡

ℏ
H

2
+ ⋯. Apply this operator to each term in 

the above expansion.



A bit of digression: gate-based quantum computing

Having understood time evolution, we are now able to understand the very basic ideas of 
gate-based quantum computing and the single-qubit gates. 

A 2-state system can be a qubit. 

A gate is a unitary transformation of the qubit.  

One example is the quantum counterpart of the classical NOT gate. 

A classical bit can only be two states: | ⟩0 and | ⟩1 . The NOT gate is the operator X = 0 1
1 0 . 

Obviously, X| ⟩0 = 0 1
1 0

1
0 = 0

1 = | ⟩1 and X| ⟩1 = | ⟩0 . The quantum NOT gate is a 
generalization, which operates on a qubit | ⟩𝜓𝜓 . 

An electron spin can be made a qubit. Here, | ⟩𝜓𝜓 = 𝛼𝛼| ⟩0 + 𝛽𝛽| ⟩1
= | ⟩χ = 𝑐𝑐↑| ⟩↑ + 𝑐𝑐↓| ⟩↓ .

X| ⟩𝜓𝜓 = 0 1
1 0

𝛼𝛼
𝛽𝛽 = 𝛽𝛽

𝛼𝛼

Not all quantum gates have classical counterparts. For example, the Z gate:  

Z| ⟩𝜓𝜓 = 1 0
0 −1

𝛼𝛼
𝛽𝛽 =

𝛼𝛼
−𝛽𝛽

We now consider the implementation of the Z gate. 



Z = 1 0
0 −1 = 1 0

0 𝑒𝑒−𝑖𝑖𝜋𝜋

Recall that if we apply a magnetic field 𝑩𝑩 = −𝐵𝐵�𝒛𝒛, the qubit will undergo 
unitary transformation 

U 𝑡𝑡 = 1 0
0 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡

So, we can apply a magnetic field pulse, with a pulse width ∆𝑡𝑡, such that 𝜔𝜔∆𝑡𝑡 = 𝜋𝜋, i.e., 
∆𝑡𝑡 is half a precession period.  This operation is a Z gate: U ∆𝑡𝑡 = Z. 

𝜃𝜃

𝑥𝑥

𝑦𝑦

𝑧𝑧
| ⟩1

| ⟩0

−𝜑𝜑

𝜋𝜋

𝒔𝒔 𝑡𝑡 + ∆𝑡𝑡

𝜃𝜃

𝑥𝑥

𝑦𝑦

𝑧𝑧

−𝜑𝜑

𝜋𝜋
𝒔𝒔 𝑡𝑡

Z| ⟩𝜓𝜓

| ⟩𝜓𝜓



Z = 1 0
0 −1 = 1 0

0 𝑒𝑒−𝑖𝑖𝜋𝜋

𝒔𝒔 𝑡𝑡 + ∆𝑡𝑡

𝜃𝜃

𝑥𝑥

𝑦𝑦

𝑧𝑧

−𝜑𝜑

𝜋𝜋
𝒔𝒔 𝑡𝑡

𝜃𝜃

𝑥𝑥

𝑦𝑦

𝑧𝑧
| ⟩1

| ⟩0

−𝜑𝜑

𝜋𝜋

Z| ⟩𝜓𝜓

| ⟩𝜓𝜓

Z| ⟩𝜓𝜓 = 1 0
0 𝑒𝑒−𝑖𝑖𝜋𝜋

cos
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝜑𝜑 sin
𝜃𝜃
2

=
cos

𝜃𝜃
2

𝑒𝑒𝑖𝑖 𝜑𝜑−𝜋𝜋 sin
𝜃𝜃
2

The Z gate operation: 𝜃𝜃,𝜑𝜑 − 𝜋𝜋 → 𝜃𝜃,𝜑𝜑 − 𝜋𝜋 . 
Visualized by the two charts below:

| ⟩𝜓𝜓 → Z| ⟩𝜓𝜓 𝒔𝒔 𝑡𝑡 → 𝒔𝒔 𝑡𝑡 + ∆𝑡𝑡 ;𝜔𝜔∆𝑡𝑡 = 𝜋𝜋

BTW, notice that Z is 
formally the same as σ𝑧𝑧. 



Homework 2

Find an implementation of the X gate. Visualize the relation between | ⟩𝜓𝜓 and X| ⟩𝜓𝜓 . 

Hint: We figured out how to implement the Z gate. We assume God is fair and does not 
favor a particular direction. 

Note: There is also a Y gate, Y = 0 −𝑖𝑖
𝑖𝑖 0 , which is formally the same as Pauli matrix σ𝑦𝑦.

𝜃𝜃

𝑥𝑥

𝑦𝑦

𝑧𝑧

−𝜑𝜑

𝜋𝜋

Z| ⟩𝜓𝜓

| ⟩𝜓𝜓

| ⟩𝜓𝜓 → Z| ⟩𝜓𝜓 | ⟩𝜓𝜓 → X| ⟩𝜓𝜓

𝜃𝜃𝑥𝑥 𝑧𝑧

𝑦𝑦

𝑥𝑥

−𝜑𝜑𝑦𝑦𝑦𝑦

𝜋𝜋

X| ⟩𝜓𝜓

| ⟩𝜓𝜓

Rotate the coordinate

| ⟩⊗

|↑〉 | ⟩⊙

| ⟩⟶
| ⟩⟵

|↓〉

| ⟩⟶| ⟩⟵
| ⟩⊗

| ⟩⊙

|↑〉

|↓〉

Define “polar angle 
with regard to x
axis” 𝜃𝜃𝑥𝑥 and 
azimuthal angle 
from y axis” 𝜑𝜑𝑦𝑦𝑦𝑦.

Apply field B = −𝐵𝐵�𝐱𝐱

B



Matrix elements 

σ𝑥𝑥 ⟩| ⊙ =
1
2
σ𝑥𝑥

1
1 =

+1
2

1
1 = +1 ⟩| ⊙ σ𝑥𝑥 ⟩| ⊗ =

−1
2

1
−1 = −1 ⟩| ⊙

Earlier we found σ𝑥𝑥 = 0 1
1 0 by finding the four matrix elements that satisfy

Now, we introduce the general formulation for the matrix elements of a general operator Q. 

Let Q = 𝑄𝑄↑↑ 𝑄𝑄↑↓
𝑄𝑄↓↑ 𝑄𝑄↓↓

in the basis of | ⟩↑ and | ⟩↓ .

Q| ⟩↑ = 𝑄𝑄↑↑ 𝑄𝑄↑↓
𝑄𝑄↓↑ 𝑄𝑄↓↓

1
0 = 𝑄𝑄↑↑

𝑄𝑄↓↑

Q| ⟩↓ = 𝑄𝑄↑↑ 𝑄𝑄↑↓
𝑄𝑄↓↑ 𝑄𝑄↓↓

0
1 = 𝑄𝑄↑↓

𝑄𝑄↓↓

↑ Q ↑ = 1 0
𝑄𝑄↑↑
𝑄𝑄↓↑

= 𝑄𝑄↑↑

↓ Q ↑ = 0 1
𝑄𝑄↑↑
𝑄𝑄↓↑

= 𝑄𝑄↓↑

↓ Q ↓ = 0 1
𝑄𝑄↑↑
𝑄𝑄↓↑

= 𝑄𝑄↓↓

↑ Q ↓ = 1 0
𝑄𝑄↑↑
𝑄𝑄↓↑

= 𝑄𝑄↑↓

We finished this slide on Thu 2/2/2023.



Quantum Mechanics Primer Part I Highlights
1. The electron spin is used as the simplest example to illustrate the most basic 
concepts of quantum mechanics:  

Eigenstates, eigenvalues, measurements;
A measurement projects the system’s state onto one of the system’s eigenstates 
for the measured quantity, i.e., the system collapses onto an eigenstate upon 
measurement.

Amplitudes, superposition, statistical interpretation of amplitudes; 
Eigenstates as vectors in Hilbert space, orthogonality, normalization, completeness; 
Dirac notations; 
Physical quantities and their operators, eigenvalue equations;
Common (simultaneous) eigenstates: 

Operators P and Q have common eigenstates ⟺ PQ = QP
Time evolution and Schrödinger equation 

The Hamiltonian H is the operator of the energy of a quantum system;
The eigenstates of H are steady-state solutions to the Schrödinger equation, and 
are referred to as stationary states; 
An arbitrary state | ⟩𝜓𝜓 undergoes unitary transformation determined by H: 

| ⟩𝜓𝜓 𝑡𝑡 = U 𝑡𝑡 | ⟩𝜓𝜓 0 where U 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝑡𝑡
ℏH



2. Features of the electron spin as a 2-state quantum system:  
An electron spin state | ⟩χ resides in a 2D Hilbert space;
The projection of the spin angular momentum in an arbitrary direction has two 
eigenvalues, +1 and −1 in the unit of ℏ/2, corresponding to two eigenstates; 
Take 3 arbitrary directions to form a right-hand Cartesian coordinate system, then 
the operators for the 3 projections are the Pauli matrices σ𝑥𝑥, σ𝑦𝑦, σ𝑧𝑧; 
No two Pauli matrices have common (simultaneous) eigenstates,  

Therefore 𝛔𝛔 = σ𝑥𝑥�𝒙𝒙 + σ𝑦𝑦�𝒚𝒚 + σ𝑧𝑧�𝒛𝒛 has no eigenvalues and no eigenstates! 
Interestingly, σ𝑥𝑥2 = σ𝑦𝑦2 = σ𝑧𝑧2 = 1 thus σ2 = σ𝑥𝑥2 + σ𝑦𝑦2 + σ𝑧𝑧2 = 3, 

which means 𝑆𝑆𝑥𝑥2 = 𝑆𝑆𝑦𝑦2 = 𝑆𝑆𝑧𝑧2 = ℏ2/4 and 𝑆𝑆2 = 𝑆𝑆𝑥𝑥2 + 𝑆𝑆𝑦𝑦2 + 𝑆𝑆𝑧𝑧2 = 3
4
ℏ2.

Applying a constant magnetic field makes the direction of the field special:  

By convention, B = −𝐵𝐵�𝐳𝐳 thus, with 𝜇𝜇𝐵𝐵 ≡
𝑒𝑒ℏ
2𝑚𝑚

, we have H = −𝜇𝜇𝐵𝐵𝐵𝐵 0
0 𝜇𝜇𝐵𝐵𝐵𝐵

; 

σ𝑧𝑧 and H have common eigenstates | ⟩↑ and | ⟩↓ (neither σ𝑥𝑥 nor σ𝑦𝑦 has common 
eigenstate with H);
An arbitrary spin state | ⟩χ rotates clockwise around �𝐳𝐳, as visualized by the 
Bloch sphere; 
The vector for the spin state | ⟩χ in the Bloch sphere chart also represents 𝒔𝒔 , 

which is well-defined although 𝒔𝒔 has no eigenvalues, 
thus 𝒔𝒔 precesses around �𝐳𝐳 at 𝜔𝜔 = ⁄2𝜇𝜇𝐵𝐵𝐵𝐵 ℏ. 



3. Concepts alluded to but not sufficiently stressed:  
Diagonalizing matrix Q finds the eigenvalues and eigenstates. 
Degeneracy: Same eigenvalue for multiple eigenstates.  

Within the subspace of the degenerate states, any linear combination of 
degenerate states is a degenerate state. 

For 2D Hilbert space, a degenerate subspace is the entire 2D Hilbert space, 
that is, any arbitrary state is an eigenstate of an operator with degeneracy.

For the electron spin, σ𝑥𝑥2 = σ𝑦𝑦2 = σ𝑧𝑧2 = 1 and σ2 = σ𝑥𝑥2 + σ𝑦𝑦2 + σ𝑧𝑧2 = 3.

4. Scope and Limitations of Part I:  
Focused on isolated single-particle systems.  

The only interaction discussed was the electron spin with an constant external 
magnetic field. 

Without any disturbance from the surroundings or interaction with other 
electrons, an electron spin state will rotate around �𝐳𝐳 forever, and its 𝒔𝒔
precesses around �𝐳𝐳 forever; in other words, the precession is not damped, and 
the polar angle 𝜃𝜃 of 𝒔𝒔 will never change. 

Moving forward, Part II will extend to many-state (including infinite) systems 
while remaining within the single particle systems (i.e. not considering many-body 
interactions, which is to be discussed in Part III). 



5. Generalization from spin ½ to general 2-state systems (not discussed until now)  
All 2-state systems follow the same math (Pauli matrices), despite different physics.  

Examples: H2
+, NH3, qubits not based on spin. 

Other 2-state systems are often described using the language of spin 1/2. 

6. Gate- (or circuit-) based quantum computing was touched upon   
A 2-state system may make a qubit.  

Not necessarily a spin ½, but the non-spin-based are often discussed in the 
language of spin and are sometimes referred to as artificial spin. 

A gate is an operation on a qubit or qubits. The operation is a unitary transformation 
that can be described by a unitary operator. 
As we are so far limited to single-particle systems, our digression to qubits and gates 
are limited to single-qubit gates, and important concepts like entanglement have not 
been mentioned. 
FYI, further reading on quantum computing: https://doi.org/10.1145/3517340

Footnotes: In discussing spin, we touched upon magnetism. We (largely) use SI units 
in this course. Notice that equations in electromagnetism may look quite different in 
different unit systems. For example, the proportional constant in 𝝁𝝁 ∝ 𝑺𝑺.

https://doi.org/10.1145/3517340


Find 〈↑|⊙〉 and 〈↑|⊗〉, and think about a sequential S-G measurements in which the first S-G apparatus 
measures 𝑠𝑠𝑥𝑥 and the second measures 𝑠𝑠𝑧𝑧. 

Recall that the inner product 〈a|b〉 is the projection of |b〉 onto |a〉. 
When projecting a vector onto a basis vector, you get the amplitudes:
For arbitrary |χ〉 = 𝑐𝑐↑|↑〉 + 𝑐𝑐↓|↓〉, we have 〈↑|χ〉 = 𝑐𝑐↑ and 〈↓|χ〉 = 𝑐𝑐↓.

Notice that the elements of the  bra are complex conjugates 
of the corresponding ones in the ket.

〈a|b〉 = 𝑎𝑎0∗ 𝑎𝑎1∗
𝑏𝑏0
𝑏𝑏1

= 𝑎𝑎0∗𝑏𝑏0 + 𝑎𝑎1∗𝑏𝑏1 is the inner product of the two vectors |a〉 = 
𝑎𝑎0
𝑎𝑎1 and |b〉 = 𝑏𝑏0𝑏𝑏1

. 

Offline exercise 1

Comments x

z

y⊙



An electron spin is initially in the state |χ(0)〉 = |⊙〉 = |𝑥𝑥+〉 = 1
2

(|↑〉 + |↓〉) at t = 0 under an 

applied magnetic field B = −𝐵𝐵�𝐳𝐳.  We also define |⊗〉 = |𝑥𝑥−〉 = 1
2

(|↑〉 − |↓〉) .  Let’s follow 
the time evolution of this electron:

|χ(t)〉 = 1
2

(𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 |↑〉 +𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡 |↓〉).

Inserting |↑〉 = 1
2

(|⊙〉 + |⊗〉) and |↓〉 = 1
2

(|⊙〉 − |⊗〉) leads to

If we measure electron spin in z-direction at time t, what are the probabilities of getting +ℏ/2 and −ℏ/2?
If we measure electron spin in x-direction at time t, what are the probabilities of getting +ℏ/2 and −ℏ/2?

| ⟩χ 𝑡𝑡 =
1
2

𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡

| ⟩⊙ + | ⟩⊗
2

+ 𝑒𝑒−𝑖𝑖
𝜔𝜔
2𝑡𝑡

| ⟩⊙ − | ⟩⊗
2

=
1
2

𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡 + 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡 | ⟩⊙ + 𝑒𝑒𝑖𝑖

𝜔𝜔
2𝑡𝑡 − 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡 | ⟩⊗

= cos
𝜔𝜔
2
𝑡𝑡 | ⟩⊙ + sin

𝜔𝜔
2
𝑡𝑡 | ⟩⊗

Offline exercise 2

Write | ⟩χ 𝑡𝑡 in the basis of  | ⟩⊙ and | ⟩⊗ .  

(Answer the questions first and then check the answers below.)

Answers & comments

When 𝑆𝑆𝑧𝑧 is measured, the probabilities for obtaining +ℏ/2 and −ℏ/2 are both 1/2 at any time t. 

x

z

y⊙



When 𝑆𝑆𝑥𝑥 is measured, the probabilities for obtaining +ℏ/2 and −ℏ/2 are both 1/2 at time t is 
cos2 𝜔𝜔

2
𝑡𝑡 = 1

2
1 + cos𝜔𝜔𝑡𝑡 and sin2 𝜔𝜔

2
𝑡𝑡 = 1

2
1 − cos𝜔𝜔𝑡𝑡 , respectively.

Comments
Bloch sphere visualization: 
States | ⟩⊙ and | ⟩⊗ , as well as | ⟩⟶ and | ⟩⟵ , 
are shown on the Bloch sphere. They are pairs 
of poles, as are |↑〉 and |↓〉. 
Moreover, any pair of poles is basis set. 

𝑥𝑥

𝑦𝑦

𝑧𝑧

| ⟩⊗

|↑〉

|↓〉

| ⟩⊙

| ⟩⟶

| ⟩⟵

𝜃𝜃

𝜔𝜔𝑡𝑡
| ⟩χ 𝑡𝑡

𝑥𝑥

𝑦𝑦

𝑧𝑧
|↑〉

|↓〉

⟩χ 0 = | ⟩⊙

| ⟩⟶

| ⟩⟵

| ⟩χ 𝑡𝑡 = cos
𝜔𝜔
2
𝑡𝑡 | ⟩⊙ + sin

𝜔𝜔
2
𝑡𝑡 | ⟩⊗

| ⟩χ 𝑡𝑡 =
𝑒𝑒𝑖𝑖
𝜔𝜔
2𝑡𝑡| ⟩↑ + 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡| ⟩↓

2
= 𝑒𝑒−𝑖𝑖

𝜔𝜔
2𝑡𝑡

| ⟩↑ + 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡| ⟩↓
2

is visualized. The result  

is obvious; 𝜔𝜔
2
𝑡𝑡 is just the “polar angle with regard to the x axis”.  



In this case where |⊙〉 = 1
2

(|↑〉 + |↓〉) at t = 0, it is said that the system is prepared in an initial state 
|⊙〉.  Since B = −𝐵𝐵�𝐳𝐳, |⊙〉 is not an eigenstate of H, i.e., the system does not have a definitive energy.  
The prepared initial state is a superposition of the ground and excited states (spin-up and -down states).
In such cases, beating happens -- the spin state oscillates between | ⟩⊙ and | ⟩⊗ at the resonance 
frequency 𝜔𝜔

2
. 

The same underlying math describes many similar physical phenomena: 
A classical example is a system of two symmetric coupled harmonic oscillators, which has two 
eigenmodes with frequencies 𝜔𝜔0 and 𝜔𝜔1. Let 𝜔𝜔1 − 𝜔𝜔0 = 𝜔𝜔 > 0, then 𝜔𝜔1+𝜔𝜔0

2
= 𝜔𝜔0 + 𝜔𝜔1−𝜔𝜔0

2
=

𝜔𝜔0 + 𝜔𝜔
2

. The lower- and higher-frequency modes are just in-phase and out-of-phase superpositions
of oscillations of the two oscillators. 
For visualization, see 
https://www.youtube.com/watch?v=x_ZkKPtgTeA and 
https://en.wikipedia.org/wiki/Oscillation#Coupled_oscillations. 
With the coupling, the oscillation of each individual oscillator is 
not an eigenmode. The oscillation must transfer back and forth 
between the two oscillators (see animation at Wikipedia page), 
even if starting out at t = 0 with all energy at one oscillator.
In this example, the 𝜔𝜔0 and 𝜔𝜔1 eigenmodes are analogies of 
stationary states |↑〉 and |↓〉.

https://www.youtube.com/watch?v=x_ZkKPtgTeA
https://en.wikipedia.org/wiki/Oscillation#Coupled_oscillations


Quantum examples are plenty: In H2
+, the electron oscillates between two states –

being with the two protons, each equivalent to the | ⟩⊙ aor | ⟩⊗ state whereas the 
bonding (ground) and the antibonding (excited) states correspond to |↑〉 and |↓〉, 
respectively. The NH3 oscillates between two opposite orientations.

If the system is prepared in an initial state |↑〉, everything else the same as in the above case, how do 
the probabilities of measuring spin up and spin down change with time?
Will there be beating between |↑〉 and |↓〉?

Further questions

Answers & comments:
The probabilities of measuring spin up and spin down will remain 1 and 0, respectively.
There is no beating between stationary states |↑〉 and |↓〉. 

The reason is that |↑〉 is an eigenstate of H, i.e., with a definitive energy, and therefore a definitive 
rate of phase evolution, 𝜔𝜔0. We often set 𝜔𝜔0 = 0 for the ground state in quantum mechanics 
An energy eigenstate is said to be a stationary state. 

Will the electron remain in |↑〉 forever?
Yes and No. If H ∝−𝐵𝐵σ𝑧𝑧 indeed, without any other contributions (as in this problem), 
then yes. 
There will always be disturbance from the environment, which add to the Hamiltonian of 
a real system. 



Applying matrix multiplication to matricesσ𝑥𝑥 and σ𝑧𝑧, we get σ𝑥𝑥σ𝑧𝑧= 0 −1
1 0 and 

σ𝑧𝑧σ𝑥𝑥= 0 1
−1 0 . Therefore σ𝑥𝑥σ𝑧𝑧 = −σ𝑧𝑧σ𝑥𝑥.

Problem 1. (a) Find the eigenvalues and the corresponding eigenstates of σ𝑥𝑥σ𝑧𝑧.  (b) Find the 
eigenvalues and the corresponding eigenstates of σ𝑧𝑧σ𝑥𝑥.  (c) Compare your results with the 
eigenvalues and the corresponding eigenstates of σ𝑦𝑦. Explain your observations. 

Problem 2. Find a relation between σ𝑦𝑦and σ𝑧𝑧, which is similar to σ𝑥𝑥σ𝑧𝑧 = −σ𝑧𝑧σ𝑥𝑥.

Offline exercise 3

Hints & comments
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