
For physical quantity 𝑄𝑄, corresponding to operator Q, there exist eigenstates ��𝑞𝑞1 , ��𝑞𝑞2 , 
…, ��𝑞𝑞𝑛𝑛 , …, with eigenvalues 𝑞𝑞1, 𝑞𝑞2, …, 𝑞𝑞𝑛𝑛, …, respectively. Thus, an arbitrary state 

⟩|𝜓𝜓 = �
𝑛𝑛

𝑐𝑐𝑛𝑛 ��𝑞𝑞𝑛𝑛 .

If the number of eigenstates is N, ⟩|𝜓𝜓 is in an N-dimensional Hilbert space; N may be ∞.

Obviously,

𝑄𝑄 = �
𝑛𝑛

𝑐𝑐𝑛𝑛 2𝑞𝑞𝑛𝑛 = ⟨ |𝜓𝜓 𝑄𝑄 ⟩|𝜓𝜓 .

Note: As in the 2-state case, 𝑄𝑄 = ⟨ |𝜓𝜓 𝑄𝑄 ⟩|𝜓𝜓 regardless of the choice of basis, as rules of 
vectors hold true regardless of the coordinate system. 

Beyond 2-State Systems

In the basis made of its own eigenstates, operator Q is a diagonal matrix. 

Q =
𝑞𝑞1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑞𝑞𝑁𝑁

.

(How do you write ��𝑞𝑞𝑛𝑛 in the 1-column matrix form? How about the corresponding bra?) 



Energy and time evolution of a quantum system

Energy E is such a special quantity that we give its operator a special name, the 
Hamiltonian H, with eigenvalues 𝐸𝐸0, 𝐸𝐸1, 𝐸𝐸2, …, 𝐸𝐸𝑛𝑛, …, corresponding to eigenstates
|0〉, |1〉, …, |n〉, … Thus we have the eigenvalue equation 

H|n〉 = 𝐸𝐸𝑛𝑛|n〉. 

An energy eigenstate (i.e. a state with a definitive energy), |n〉, evolves in time following

|n(t)〉 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡|n(0)〉 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡|n(0)〉, where 𝜔𝜔𝑛𝑛 = 𝐸𝐸𝑛𝑛/ℏ. 

For a system in an energy eigenstate (i.e. a state with a definitive energy), |n〉, this phase
evolution has no observable physical consequences. The eigenstates of H are called 
stationary states. 
For a system in a state that is a linear combination (superposition) of stationary states, 
|ψ〉 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛|n〉, each term evolves at a different frequency thus beating happens. 

This idea can be expressed in the matrix form, |ψ (t)〉 = U(t) |ψ (0)〉, where U(t) is 
a diagonal matrix with the nth diagonal element being 𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡 in the basis of |0〉, 
|1〉, …, |n〉, … 

Too abstract? We have illustrated the same principles using a simple 2-state system example.

(We label eigenvalues and eigenstates with integers starting with 0 for the ground state.)



Quantities with continuous eigenvalues

The spectrum of the eigenvalues may even be continuous!   

Let’s now consider the position of a particle in 1D space (for simplicity). 
The positions is x, which is continuous. 

Let |x〉 be the state in which the particle is localized at x. 

For an n-state system, 
an arbitrary state
|ψ〉 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛|n〉. 

For a 2-state system, 
an arbitrary state 
|χ〉 = 𝑐𝑐0|0〉 + 𝑐𝑐1|1〉.  

Similarly, for continuous x, 
an arbitrary state
|ψ〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑ψ 𝑑𝑑 |x〉. 

Here, for continuous x, ψ 𝑑𝑑 is the amplitude of |x〉 in |ψ〉, i.e., projection of |ψ〉
onto |x〉, just as 𝑐𝑐𝑛𝑛 is to |ψ〉 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛|n〉 in the discrete case.

𝑐𝑐𝑛𝑛 = 〈𝑛𝑛|ψ〉 ψ 𝑑𝑑 = 〈𝑑𝑑|ψ〉
For continuous x

by analogy

Question: What is the physical meaning of |ψ 𝑑𝑑 |2? 

From discrete to continuous, 
summation becomes integral.

A state ⟩|𝜓𝜓 of a quantum system is in an N-dimensional Hilbert space; N may be ∞.

More general than 
spin up and down The amplitude becomes 

a continuous function.

𝑐𝑐0 = 〈0|χ〉 and 𝑐𝑐1 = 〈1|χ〉
discrete

| ⟩𝜒𝜒 =
𝑐𝑐0
𝑐𝑐0

How do you write |ψ〉 as a 1-
column, N-dimensional matrix?

For the continuous case, 
we don’t have a way to do 
that.

We paused mid this slide on Tue 2/7/2023.



Answer: Just as |𝑐𝑐𝑛𝑛|2 = |〈𝑛𝑛|χ〉|2 is the probability of finding the system in state |n〉, 
|ψ 𝑑𝑑 |2𝑑𝑑𝑑𝑑 = |〈𝑑𝑑|ψ〉|2𝑑𝑑𝑑𝑑 is the probability of finding the particle in state |x〉, i.e., at 
location x within a neighbood 𝑑𝑑𝑑𝑑 long..

As amplitudes of discrete states, the wave function is to be normalized. 

Note: Not all wave functions can be normalized this way.  We will re-examine normalization later.

Question: What is the physical meaning of |ψ 𝑑𝑑 |2? 

You may have learned that ψ 𝑑𝑑 is the wave function.

�
−∞

∞
𝑑𝑑𝑑𝑑|〈𝑑𝑑|ψ〉|2 = �

−∞

∞
𝑑𝑑𝑑𝑑|ψ 𝑑𝑑 |2 = 1�

𝑛𝑛

|𝑐𝑐𝑛𝑛|2 = �
𝑛𝑛

|〈𝑛𝑛|χ〉|2 = 1

ψ 𝑑𝑑 ≡ 〈𝑑𝑑|ψ〉 is the wave function. 
|ψ 𝑑𝑑 |2 is the probability density,

Question:
What is the unit of ψ 𝑑𝑑 in 1D space?

If we can write down the H of a (1-particle) system, we can find the stationary states |n〉
and eigenvalues 𝐸𝐸𝑛𝑛. 
We can then trace the time evolution of any arbitrary state |ψ 𝑡𝑡 〉 = ∑𝑛𝑛 𝑐𝑐𝑛𝑛 𝑡𝑡 |n 𝑡𝑡 〉. 
For any stationary state |n〉, we can find its wave function ψ𝑛𝑛 𝑑𝑑 ≡ 〈𝑑𝑑|n〉, and then we 
know the probability distribution of the particle in space. 
We can also find the wave function of an arbitrary state ψ 𝑑𝑑 ≡ 〈𝑑𝑑|ψ〉. 
Thus we know everything about the system that we can know. 



Relations between operators in quantum mechanics follow those between 
the corresponding physical quantities known in classical physics.

Recall the following:

H =
p2

2𝑚𝑚
+ 𝑉𝑉 𝑑𝑑

Momentum operator

Mass 

Therefore, it is critical to know H.

The Hamiltonian operator

Potential energy
Side note: Here, in 1D, momentum p
is considered a scalar. 

To know H, we need to know p.

Next, we introduce the Schrödinger equation in the wave function form
without rigorous proof (to be given later).

p|p〉 = 𝑝𝑝|p〉
momentum operator

momentum eigenvalue

momentum eigenstate corresponding to eigenvalue p

Let |p〉 be an momentum eigenstate with eigenvalue p, we can then write:  



p|p〉 = 𝑝𝑝|p〉 〈𝑑𝑑|p|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉 p 〈𝑑𝑑|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉

This step will be discussed later.

Inserting the wave function of the momentum eigenstate 〈𝑑𝑑|𝑝𝑝〉 ≡ ψ𝑝𝑝 𝑑𝑑 , we get:

pψ𝑝𝑝 𝑑𝑑 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑

Here, operator p acts on wave function ψ𝑝𝑝 𝑑𝑑 . 

You may have learned that the momentum eigenstate is a plane wave, that is, 

Side note: With time evolution included, 
〈𝑑𝑑|𝑝𝑝 𝑡𝑡 〉 = ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝑖𝑖𝜔𝜔𝑡𝑡

ψ𝑝𝑝 𝑑𝑑 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘 = ⁄𝑝𝑝 ℏ

(1)

Right side of Eq. (1): 𝑝𝑝ψ𝑝𝑝 𝑑𝑑 = 𝑘𝑘ℏ𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

Noticing 𝑑𝑑
𝑑𝑑𝑖𝑖
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, we immediately see

𝑝𝑝ψ𝑝𝑝 𝑑𝑑 = 𝑘𝑘ℏ𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =
ℏ
𝑖𝑖 𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑖𝑖ℏ

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖.

Compare this to the left side of Eq. (1), we find

p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

This is the form of momentum operator p 
when acting on a wave function. 



H =
p2

2𝑚𝑚
+ 𝑉𝑉 𝑑𝑑 = −

ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑑𝑑2 + 𝑉𝑉 𝑑𝑑

p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

insert

This means the Schrödinger equation can be solved as follows:

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡

| ⟩𝜓𝜓 𝑡𝑡 = H| ⟩𝜓𝜓 𝑡𝑡

H| ⟩𝑛𝑛 = 𝐸𝐸𝑛𝑛| ⟩𝑛𝑛| ⟩𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡| ⟩𝑛𝑛There are stationary solutions: 

𝜓𝜓𝑛𝑛 𝑑𝑑, 𝑡𝑡 ≡ 𝑑𝑑 𝜓𝜓𝑛𝑛 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡 𝑑𝑑 𝑛𝑛 𝑑𝑑 H 𝑛𝑛 = 𝐸𝐸𝑛𝑛 𝑑𝑑 𝑛𝑛

𝜓𝜓𝑛𝑛 𝑑𝑑 ≡ 𝑑𝑑 𝑛𝑛
insert

𝜓𝜓𝑛𝑛 𝑑𝑑, 𝑡𝑡 = 𝑒𝑒−𝑖𝑖
𝐸𝐸𝑛𝑛
ℏ 𝑡𝑡𝜓𝜓𝑛𝑛 𝑑𝑑 H𝜓𝜓𝑛𝑛 𝑑𝑑 = 𝐸𝐸𝑛𝑛𝜓𝜓𝑛𝑛 𝑑𝑑

We usually write the Schrödinger equation in the wave function form as

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡
𝜓𝜓 𝑑𝑑, 𝑡𝑡 = H𝜓𝜓 𝑑𝑑, 𝑡𝑡 H𝜓𝜓 𝑑𝑑 = 𝐸𝐸𝜓𝜓 𝑑𝑑



We usually write the Schrödinger equation in the wave function form as

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡
𝜓𝜓 𝑑𝑑, 𝑡𝑡 = H𝜓𝜓 𝑑𝑑, 𝑡𝑡 H𝜓𝜓 𝑑𝑑 = 𝐸𝐸𝜓𝜓 𝑑𝑑

Then, insert H =
p2

2𝑚𝑚
+ 𝑉𝑉 𝑑𝑑 = −

ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑑𝑑2 + 𝑉𝑉 𝑑𝑑

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡
𝜓𝜓 𝑑𝑑, 𝑡𝑡 = −

ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑑𝑑2

+ 𝑉𝑉 𝑑𝑑 𝜓𝜓 −
ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑑𝑑2 𝜓𝜓 𝑑𝑑 + 𝑉𝑉 𝑑𝑑 𝜓𝜓 𝑑𝑑 = 𝐸𝐸𝜓𝜓 𝑑𝑑

or

𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑡𝑡 𝜓𝜓 𝑑𝑑, 𝑡𝑡 = −

ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑑𝑑2 + 𝑉𝑉 𝑑𝑑 𝜓𝜓 𝑑𝑑, 𝑡𝑡 −
ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑑𝑑2 + 𝑉𝑉 𝑑𝑑 𝜓𝜓 𝑑𝑑 = 𝐸𝐸𝜓𝜓 𝑑𝑑

(Stationary state Schrödinger equation) 

This is the starting point of the conventional way to teach quantum mechanics. 
Lots of examples will be solved for various potentials and boundary conditions.



Important examples

Example 2: Three-dimensional hard-wall box

− ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑖𝑖2
ψ 𝑑𝑑 = 𝐸𝐸ψ 𝑑𝑑 inside the well (0 < 𝑑𝑑 < 𝑎𝑎), ψ 𝑑𝑑 = 0 outside. 

Discussions: 
1D standing wave, like that of a string or a transmission line with 
both ends shorted. 

We usually label the ground state in such a potential well with n = 1. 

Do H and p have simultaneous eigenstates? What are the eigenstates of p?
The concept of “good” quantum numbers.

𝐸𝐸𝑛𝑛 ∝ 𝑛𝑛2, 𝐸𝐸𝑛𝑛 ∝ 1/𝑎𝑎2. 

Example 1: One-dimensional infinitely deep well

Discussions: Quantum numbers 𝑛𝑛𝑖𝑖, 𝑛𝑛𝑦𝑦, 𝑛𝑛𝑧𝑧; accidental degeneracy (3 edges may be different). 

States with even and odd symmetry. 

p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

Extend to 3D
𝐩𝐩 = −𝑖𝑖ℏ𝛁𝛁

Vector operator 
per our notation

https://en.wikipedia.org/wiki/Particle_in_a_box

https://en.wikipedia.org/wiki/Particle_in_a_box


Example 3: One-dimensional harmonic oscillator

ψ0 𝑑𝑑 = 𝑒𝑒−
𝑚𝑚𝜔𝜔0
2ℏ 𝑖𝑖2

𝐸𝐸𝑛𝑛 = 𝑛𝑛 +
1
2

ℏ𝜔𝜔0

Discussions: Energy intervals; zero point energy; symmetry; regions where 𝐸𝐸𝑛𝑛 < 𝑉𝑉 𝑑𝑑 . 
What is ψ0 𝑑𝑑, 𝑡𝑡 ? What is ψ𝑛𝑛 𝑑𝑑, 𝑡𝑡 , given stationary ψ𝑛𝑛 𝑑𝑑 ? 

Figures from Wikipedia page https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator.

Watch animation at Wikipedia page 
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator

Wave functions Probability distributions

𝑉𝑉 𝑑𝑑 =
1
2
𝐾𝐾𝑑𝑑2 =

1
2
𝑚𝑚𝜔𝜔02𝑑𝑑2

𝜔𝜔0 =
𝐾𝐾
𝑚𝑚
⇒ 𝐾𝐾 = 𝑚𝑚𝜔𝜔0

2

https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator


Example 4: One-dimensional finite-depth well

Discussions: Energy intervals; symmetry; regions where 𝐸𝐸𝑛𝑛 < 𝑉𝑉 𝑑𝑑 . 
Wave function tails and tunneling. Consider two wells close to each other.  

Example 5: H atom

Choice of setting the zero reference for energy: for your convenience.    

As for the hard-wall cases, we can also have cases where the particle is free in 
on or two dimensions.  EM wave analogy: dielectric cavities and waveguides. 
Notice the differences.  (For future discussion; quantum well devices)

𝑉𝑉 ∞ = 0.   Central force: angular momentum L conserved.     

Choose spherical coordinate system (r, θ, φ). Get radial and angular equations.    

Recall that for spin, H, 𝐒𝐒2, and S𝑧𝑧 have simultaneous eigenstates, but S𝑖𝑖, S𝑦𝑦, and S𝑧𝑧 do not.  
Similarly for orbital motion, H, 𝐋𝐋2, and L𝑧𝑧 have simultaneous eigenstates, but L𝑖𝑖, L𝑦𝑦, and L𝑧𝑧
do not.  

For spin, 𝑆𝑆2 = 𝑠𝑠(𝑠𝑠 + 1)ℏ2, where s = ½ thus 𝑆𝑆2 = 3
4
ℏ2, and 𝑆𝑆𝑧𝑧 = 𝑚𝑚𝑠𝑠ℏ, where 𝑚𝑚𝑠𝑠 = ± 1

2
; 𝑠𝑠 and 𝑚𝑚𝑠𝑠

are spin angular momentum quantum numbers. (Here, 𝑠𝑠 is not the dimensionless quantity 
⁄𝑆𝑆 ⁄ℏ 2 we defined in Part 1. 𝑚𝑚𝑠𝑠 = 𝑠𝑠𝑧𝑧.) 

For orbital motion, 𝐿𝐿2 = 𝑙𝑙(𝑙𝑙 + 1)ℏ2, where l = 0, 1, 2, …, and 𝐿𝐿𝑧𝑧 = 𝑚𝑚ℏ, where 𝑚𝑚 = 0, ±1, ±2, 
…, ±𝑙𝑙, (|m| ≤ l): 𝑙𝑙 and 𝑚𝑚 are orbital angular momentum quantum numbers.  

𝑉𝑉 𝐫𝐫 = −
𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
.



Choose spherical coordinate system (r, θ, φ). Get radial and angular equations 
by variable separation.    

The solutions are 𝜓𝜓𝑛𝑛𝑛𝑛𝑚𝑚 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑), where the spherical harmonics 𝑌𝑌𝑛𝑛𝑚𝑚
are solutions to angular momentum eigenvalue equations
𝑳𝑳2𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝑙𝑙(𝑙𝑙 + 1)ℏ2𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑 , 

𝑳𝑳𝑧𝑧𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝑚𝑚ℏ𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑

Further separate θ and φ:  𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑 = 𝛩𝛩𝑛𝑛𝑚𝑚 (𝜃𝜃) 1
2𝜋𝜋
𝑒𝑒𝑖𝑖𝑚𝑚𝜑𝜑

Normalization with regard to ϕ
Real valued

Normalization

�
0

𝜋𝜋
𝑑𝑑𝜃𝜃 𝛩𝛩𝑛𝑛𝑚𝑚 (𝜃𝜃) 2 sin𝜃𝜃 = 1

�
0

2𝜋𝜋
𝑑𝑑𝜑𝜑

1
2𝜋𝜋

𝑒𝑒𝑖𝑖𝑚𝑚𝜑𝜑
2

= 1

�
0

𝜋𝜋
𝑑𝑑𝜃𝜃 sin𝜃𝜃 �

0

2𝜋𝜋
𝑑𝑑𝜑𝜑 𝑌𝑌𝑛𝑛𝑚𝑚 𝜃𝜃,𝜑𝜑 2 = 1

l = 0, m = 0: s orbital.    𝑌𝑌00 𝜃𝜃,𝜑𝜑 =
1
4𝜋𝜋

Angular momentum eigenvalues 𝐿𝐿2 = 0, 𝐿𝐿𝑧𝑧 = 0.

An orbital is a single-electron state.

l are non-negative integers; 
|m| ≤ l

1
2�0

𝜋𝜋
𝑑𝑑𝜃𝜃 sin𝜃𝜃 = 1Normalization Solid angle of entire 3D space is 4𝜋𝜋. 



l = 1, m = 0, ±1: p orbitals    

𝑌𝑌10 𝜃𝜃,𝜑𝜑 =
3
4𝜋𝜋

cos𝜃𝜃

l = 1, m = 0: 𝑝𝑝𝑧𝑧 orbital,
eigenvalues 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑧𝑧 = 0.

l = 1, m = ±1: linear combinations form real-valued 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑦𝑦 orbitals (which are not
eigenstates of 𝐿𝐿𝑧𝑧), angular momentum eigenvalues 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑧𝑧 = ±ℏ.

http://mathworld.wolfram.com/SphericalHarmonic.html

𝑌𝑌1,±1 𝜃𝜃,𝜑𝜑 = ∓ 3
8𝜋𝜋

sin𝜃𝜃 𝑒𝑒±𝑖𝑖𝜑𝜑

|𝑌𝑌10 𝜃𝜃,𝜑𝜑 |2

https://en.wikipedia.org/wiki/Spherical_harmonics

𝑖𝑖
2
𝑌𝑌1,−1 + 𝑌𝑌1,−1 = 3

4𝜋𝜋
sin𝜃𝜃 sin𝜑𝜑

1
2
𝑌𝑌1,−1 − 𝑌𝑌1,−1 = 3

4𝜋𝜋
sin𝜃𝜃 cos𝜑𝜑

⇒

s

p

d

f

𝑝𝑝𝑧𝑧
𝑝𝑝𝑖𝑖𝑝𝑝𝑦𝑦

𝛩𝛩10 𝜃𝜃 =
3
2

cos𝜃𝜃
3
2
�
0

𝜋𝜋
𝑑𝑑𝜃𝜃 cos2 𝜃𝜃 sin 𝜃𝜃 = 1

http://mathworld.wolfram.com/
SphericalHarmonic.html

|𝑌𝑌10 𝜃𝜃,𝜑𝜑 |2

𝑝𝑝𝑖𝑖

𝑝𝑝𝑦𝑦

http://mathworld.wolfram.com/SphericalHarmonic.html
https://en.wikipedia.org/wiki/Spherical_harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html


𝑖𝑖
2
𝑌𝑌1,−1 + 𝑌𝑌1,1 = 3

4𝜋𝜋
sin𝜃𝜃 sin𝜑𝜑 = 3

4𝜋𝜋
cos𝜃𝜃𝑦𝑦

1
2
𝑌𝑌1,−1 − 𝑌𝑌1,1 = 3

4𝜋𝜋
sin𝜃𝜃 cos𝜑𝜑 = 3

4𝜋𝜋
cos𝜃𝜃𝑖𝑖

𝜃𝜃𝑦𝑦
𝜃𝜃𝑖𝑖

Interesting to note that
𝑝𝑝𝑧𝑧 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑧𝑧 = 0 (l = 1, m ≡ 𝑚𝑚𝑧𝑧 = 0);
𝑝𝑝𝑦𝑦 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑦𝑦 = 0 (l = 1, 𝑚𝑚𝑦𝑦 = 0);
𝑝𝑝𝑖𝑖 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑖𝑖 = 0 (l = 1, 𝑚𝑚𝑖𝑖 = 0).

https://en.wikipedia.org/wiki/Spherical_harmonics

s

p

d

f

𝑝𝑝𝑧𝑧
𝑝𝑝𝑖𝑖𝑝𝑝𝑦𝑦

You define polar angle from y axis, 𝜃𝜃𝑦𝑦, 
and polar angle from x axis, 𝜃𝜃𝑖𝑖.

cos𝜃𝜃𝑦𝑦 = sin𝜃𝜃 sin𝜑𝜑
cos𝜃𝜃𝑖𝑖 = sin𝜃𝜃 cos𝜑𝜑

Easy to show

Compare: 𝑌𝑌10 𝜃𝜃,𝜑𝜑 = 3
4𝜋𝜋

cos𝜃𝜃

𝑝𝑝𝑖𝑖

𝑝𝑝𝑦𝑦

𝑝𝑝𝑧𝑧https://en.wikipedia.org/wiki/Spherical_harmonics

𝑝𝑝𝑧𝑧 𝑝𝑝𝑖𝑖𝑝𝑝𝑦𝑦

https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics


𝑝𝑝𝑧𝑧 = 𝑌𝑌10 𝜃𝜃,𝜑𝜑 =
3
4𝜋𝜋

cos𝜃𝜃

𝑝𝑝𝑦𝑦 =
𝑖𝑖
2
𝑌𝑌1,−1 + 𝑌𝑌1,1 =

3
4𝜋𝜋

sin 𝜃𝜃 sin𝜑𝜑 =
3
4𝜋𝜋

cos𝜃𝜃𝑦𝑦

𝑝𝑝𝑖𝑖 =
1
2
𝑌𝑌1,−1 − 𝑌𝑌1,1 =

3
4𝜋𝜋

sin 𝜃𝜃 cos𝜑𝜑 =
3
4𝜋𝜋

cos𝜃𝜃𝑖𝑖

Define polar angle from y axis, 𝜃𝜃𝑦𝑦, and 
polar angle from x axis, 𝜃𝜃𝑖𝑖.

cos𝜃𝜃𝑦𝑦 = sin 𝜃𝜃 sin𝜑𝜑
cos𝜃𝜃𝑖𝑖 = sin 𝜃𝜃 cos𝜑𝜑

𝜃𝜃𝑦𝑦
𝜃𝜃𝑖𝑖

FYI:  𝑝𝑝𝑖𝑖, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧 orbitals and spherical harmonics

𝑝𝑝𝑧𝑧 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑧𝑧 = 0 (l = 1, m ≡ 𝑚𝑚𝑧𝑧 = 0);
𝑝𝑝𝑦𝑦 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑦𝑦 = 0 (l = 1, 𝑚𝑚𝑦𝑦 = 0);
𝑝𝑝𝑖𝑖 is the eigenstate with 𝐿𝐿2 = 2ℏ2, 𝐿𝐿𝑖𝑖 = 0 (l = 1, 𝑚𝑚𝑖𝑖 = 0).

https://en.wikipedia.org/wiki/Spherical_harmonics

𝑝𝑝𝑧𝑧 𝑝𝑝𝑖𝑖𝑝𝑝𝑦𝑦

The 𝑝𝑝𝑖𝑖, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧 orbitals are real-valued. (Overall 
phase of one state irrelevant; the three are in phase.)

⇒
𝑌𝑌1,1 =

𝑝𝑝𝑖𝑖 + 𝑖𝑖𝑝𝑝𝑦𝑦
2

𝑌𝑌1,−1 =
𝑝𝑝𝑖𝑖 − 𝑖𝑖𝑝𝑝𝑦𝑦

2

https://en.wikipedia.org/wiki/Spherical_harmonics


l = 2, m = 0, ±1, ±2:  Five d orbitals
Angular momentum eigenvalues 𝐿𝐿2 = 6ℏ2.
For m ≠ 0, linear combinations of 𝑌𝑌2,𝑚𝑚 form real-valued d orbitals.

l = 3, m = 0, ±1, ±2 , ±3:  seven f orbitals    
Angular momentum eigenvalues 𝐿𝐿2 = 12ℏ2.

https://en.wikipedia.org/wiki/Spherical_harmonics

s

p

d

f

𝑝𝑝𝑧𝑧

𝑝𝑝𝑖𝑖
𝑝𝑝𝑦𝑦

x

z

y⊙

These are solutions to the angular equation, which is the angular momentum 
eigenvalue equation.

https://en.wikipedia.org/wiki/Spherical_harmonics


The overall solutions are 𝜓𝜓𝑛𝑛𝑛𝑛𝑚𝑚 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑).

For all central forces, the angular solutions 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) are the same.
For a general central force, the radial solutions 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 correspond to energy eigenvalues 𝐸𝐸𝑛𝑛𝑛𝑛.

For the Coulomb force of a point charge, energy eigenvalues 𝐸𝐸𝑛𝑛𝑛𝑛 is degenerate for all l, 
thus simply 𝐸𝐸𝑛𝑛 (but 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 are still different for different l). H-like ions e.g. He+

http://staff.mbi-berlin.de/hertel/physik3/chapter8/8.3html/01__99.png

|𝑟𝑟𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 |2

https://d2jmvrsizmvf4x.cloudfront.net/oVigeAgPQwC2STwkBOQr_01__100.png

𝑅𝑅10 𝑟𝑟

𝑅𝑅20 𝑟𝑟

𝑅𝑅30 𝑟𝑟

𝑅𝑅21 𝑟𝑟

𝑅𝑅31 𝑟𝑟 𝑅𝑅32 𝑟𝑟

n = 1, 2, 3, … l = 0, 1, 2, …, n−1 𝐸𝐸𝑛𝑛 = −
1

(4𝜋𝜋𝜀𝜀0)2
𝑚𝑚𝑒𝑒4

2ℏ2
1
𝑛𝑛2

Our discussion paused here on Thu 2/9/2023.

http://staff.mbi-berlin.de/hertel/physik3/chapter8/8.3html/01__99.png
https://d2jmvrsizmvf4x.cloudfront.net/oVigeAgPQwC2STwkBOQr_01__100.png


Visualization of 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟

n = 1, 2, 3, … l = 0, 1, 2, …, n−1

http://staff.mbi-berlin.de/hertel/physik3/chapter8/8.3html/01__99.png

|𝑟𝑟𝑅𝑅21 𝑟𝑟 |2

https://d2jmvrsizmvf4x.cloudfront.net/oVigeAgPQwC2STwkBOQr_01__100.png

𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟

𝑅𝑅10 𝑟𝑟

𝑅𝑅20 𝑟𝑟

𝑅𝑅30 𝑟𝑟

𝑅𝑅21 𝑟𝑟

𝑅𝑅31 𝑟𝑟
𝑅𝑅32 𝑟𝑟

|𝑟𝑟𝑅𝑅10 𝑟𝑟 |2

|𝑟𝑟𝑅𝑅20 𝑟𝑟 |2

|𝑟𝑟𝑅𝑅30 𝑟𝑟 |2
|𝑟𝑟𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 |2

|𝑟𝑟𝑅𝑅31 𝑟𝑟 |2

|𝑟𝑟𝑅𝑅32 𝑟𝑟 |2

𝐸𝐸1 = −13.6 eV

Bohr radius 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0
ℏ2

𝑚𝑚𝑒𝑒2

𝐸𝐸𝑛𝑛 = −
1

4𝜋𝜋𝜀𝜀0 2
𝑚𝑚𝑒𝑒4

2ℏ2
1
𝑛𝑛2

= −
1

4𝜋𝜋𝜀𝜀0
𝑒𝑒2

2𝑎𝑎0
1
𝑛𝑛2

𝑎𝑎0 = 0.53 Å

𝑎𝑎0 = 0.53 Å

http://staff.mbi-berlin.de/hertel/physik3/chapter8/8.3html/01__99.png
https://d2jmvrsizmvf4x.cloudfront.net/oVigeAgPQwC2STwkBOQr_01__100.png


https://en.wikipedia.org/wiki/Atomic_orbital

Visualization of the overall wave functions 𝜓𝜓𝑛𝑛𝑛𝑛𝑚𝑚 𝑟𝑟,𝜃𝜃,𝜑𝜑 = 𝑅𝑅𝑛𝑛𝑛𝑛 𝑟𝑟 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)

https://en.wikipedia.org/wiki/Atomic_orbital


𝑎𝑎0 = 0.53 Å

𝐸𝐸1 = 1
2
𝑉𝑉 𝑎𝑎0 = −13.6 eV

𝑉𝑉 𝑎𝑎0 = 2𝐸𝐸1 = −27.2 eV

http://www.starkeffects.com/hydrogen_atom_wavefunctions.shtml

http://www.starkeffects.com/hydrogen_atom_wavefunctions.shtml


Potential well shapes and 
energy level distributions

https://www.cambridge.org/core/books/applied-nanophotonics/electrons-
in-potential-wells-and-in-solids/D1A1D672320B55539DE286196D51EF47

https://en.wikibooks.org/wiki/Materials_in_Electronics/
Confined_Particles/1D_Finite_Wells

http://www.starkeffects.com/hydrogen_atom_wavefunctions.shtml

https://www.cambridge.org/core/books/applied-nanophotonics/electrons-in-potential-wells-and-in-solids/D1A1D672320B55539DE286196D51EF47
https://en.wikibooks.org/wiki/Materials_in_Electronics/Confined_Particles/1D_Finite_Wells
http://www.starkeffects.com/hydrogen_atom_wavefunctions.shtml


Potential 
energy

Example 5: H2
+

With the two protons fixed at a 
constant distance, the H2

+ is an 
analytically solvable 1-e problem. 

We focus on the two lowest stationary 
states: ground state |0〉 and first excited 
state |1〉 .

𝜓𝜓𝑆𝑆 𝒓𝒓 = 𝒓𝒓 0 Symmetric

𝜓𝜓𝐴𝐴 𝒓𝒓 = 𝒓𝒓 0 Antisymmetric



H2
+ is a 2-state system

We view the electron as shared by the two 
protons, resulting in two stationary states:

𝜙𝜙𝐿𝐿 𝒓𝒓 = 𝒓𝒓 𝐿𝐿 : the electron “associated” 
with the left H atom

𝜙𝜙𝑅𝑅 𝒓𝒓 = 𝒓𝒓 𝑅𝑅 : the electron “associated” 
with the right H atom

Bonding:        |0〉 = 1
2

(|L〉 + |R〉)  and 

Antibonding: |1〉 = 1
2

(|L〉 − |R〉)
Here, |L〉 and |R〉 are not the H 1s atomic 
orbitals. 
Rather, they are found after the stationary 
states are found: 

|L〉 = 1
2

(|0〉 + |1〉)  and 

|R〉 = 1
2

(|0〉 − |1〉)

𝐿𝐿 𝐿𝐿 = 𝑅𝑅 𝑅𝑅 = 1,
𝐿𝐿 𝑅𝑅 = 𝑅𝑅 𝐿𝐿 = 0



H2
+ is a 2-state system

Questions:
If we prepare an H2

+ in an initial state |L〉 at t = 0 and “measure” whether the electron is 
associated with the left or right proton, how do the probabilities of finding it associated 
with the left and right protons change with time?
What if we prepare the H2

+ in |0〉 at t = 0 ?

Bonding:        |0〉 = 1
2

(|L〉 + |R〉)  and 

Antibonding: |1〉 = 1
2

(|L〉 − |R〉)
|L〉 = 1

2
(|0〉 + |1〉)  and 

|R〉 = 1
2

(|0〉 − |1〉)

Hint: Use spin analogy. 



Answers:
If we prepare an H2

+ in |L〉 at t = 0 and measure
whether the electron is associated with the left 
or right proton, the probabilities of finding left 
and right will oscillate back and forth at the 
frequency determined by the energy difference 
between the bonding (|0〉) and antibonding 
(|1〉) states. 

| ⟩𝜓𝜓 𝑡𝑡 = cos
𝜔𝜔
2
𝑡𝑡 | ⟩𝐿𝐿 + sin

𝜔𝜔
2
𝑡𝑡 | ⟩𝑅𝑅 .

The probabilities are 
cos2 𝜔𝜔

2
𝑡𝑡 = 1

2
1 + cos𝜔𝜔𝑡𝑡 left, 

sin2 𝜔𝜔
2
𝑡𝑡 = 1

2
1 − cos𝜔𝜔𝑡𝑡 right.

𝜃𝜃

𝜔𝜔𝑡𝑡
| ⟩𝜓𝜓 𝑡𝑡

𝑑𝑑

|0〉

|1〉

⟩𝜓𝜓 0 = | ⟩𝐿𝐿

| ⟩𝑅𝑅

ℏ𝜔𝜔

Ground state | ⟩0

| ⟩1

If we prepare the H2
+ in |0〉 at t = 0, it will stay there 

forever since |0〉 is stationary. The probabilities are 
half/half for finding it left and right.



From previous slides:

H =
p2

2𝑚𝑚
+ 𝑉𝑉 𝑑𝑑

Momentum operator

Mass 

The Hamiltonian operator

Potential energy

Side note: Here, in 1D, momentum p
is considered a scalar. 

To know H, we need to know p.

Next, we introduce the Schrödinger equation in the wave function form
without rigorous proof (to be given later).

p|p〉 = 𝑝𝑝|p〉

momentum operator momentum eigenvalue

momentum eigenstate corresponding to eigenvalue p

Let |p〉 be an momentum eigenstate with eigenvalue p, we can then write:  

Re-examine the wave function form of Schrödinger equation  

〈𝑑𝑑|p|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉 p 〈𝑑𝑑|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉

This step will be discussed later.

Inserting the wave function of the momentum eigenstate 〈𝑑𝑑|𝑝𝑝〉 ≡ ψ𝑝𝑝 𝑑𝑑 , we get:

pψ𝑝𝑝 𝑑𝑑 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑 (1)

p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑“Knowing” ψ𝑝𝑝 𝑑𝑑 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 with 𝑘𝑘 = ⁄𝑝𝑝 ℏ, we concluded 



The wave function of momentum eigenstate |p〉 is ψ𝑝𝑝 𝑑𝑑 = 〈𝑑𝑑|p〉.

|p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉

Let’s examine the time evolution of |p(t)〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 |x〉. 

But, we can’t even normalize ψ𝑝𝑝 𝑑𝑑 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.  Let’s have a look back.  

H =
p2

2𝑚𝑚 + 𝑉𝑉 𝑑𝑑

For that, we must look at H.

As long as 𝑉𝑉 𝑑𝑑 ≠ constant, H and p 
do not have common eigenstates. Why? 

|p〉 is an eigenstate of the H for a free particle: H =
p2

2𝑚𝑚

Therefore, for a free particle, the stationary Schrödinger equation is

H|p〉 = 𝐸𝐸 𝑝𝑝 |p〉 =
𝑝𝑝2

2𝑚𝑚
| ⟩𝑝𝑝

Common eigenstate of H and p

Eigenvalue of H as a function of 𝑝𝑝, which follows the classical relation 𝐸𝐸 𝑝𝑝 = 𝑝𝑝2

2𝑚𝑚
.

Summing up 
all projections



Since |p〉 is an eigenstate of H (for a free particle), 

|p(t)〉= 𝑒𝑒−𝑖𝑖
𝐸𝐸
ℏ𝑡𝑡|p(0)〉 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 |p(0)〉, where we define 𝜔𝜔 = 𝐸𝐸/ℏ.  

Therefore, ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 =𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡ψ𝑝𝑝 𝑑𝑑, 0 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡ψ𝑝𝑝 𝑑𝑑 .

ψ𝑝𝑝 𝑑𝑑 − 𝑣𝑣𝑡𝑡, 0 = ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 since particle classically moves at a constant speed 𝑣𝑣 = ⁄𝑝𝑝 𝑚𝑚 .

⇒ ψ𝑝𝑝 𝑑𝑑 − 𝑣𝑣𝑡𝑡, 0 = ψ𝑝𝑝 𝑑𝑑 − 𝑣𝑣𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡ψ𝑝𝑝 𝑑𝑑 .

We also define 〈𝑑𝑑|𝑝𝑝 𝑡𝑡 〉 = ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 and 〈𝑑𝑑|𝑝𝑝 0 〉 = ψ𝑝𝑝 𝑑𝑑, 0 = ψ𝑝𝑝 𝑑𝑑 .

We immediately see ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 = 𝑐𝑐𝑝𝑝𝑒𝑒
−𝑖𝑖𝜔𝜔(𝑡𝑡−𝑥𝑥𝑣𝑣) = 𝑐𝑐𝑝𝑝𝑒𝑒

𝑖𝑖(𝜔𝜔𝑣𝑣𝑖𝑖−𝜔𝜔𝑡𝑡), where𝑐𝑐𝑝𝑝is a constant 
TBD.

𝑘𝑘 =
𝜔𝜔
𝑣𝑣 =

𝐸𝐸/ℏ
�𝑝𝑝 𝑚𝑚

=
𝑝𝑝2
2𝑚𝑚ℏ
�𝑝𝑝 𝑚𝑚

= �𝑝𝑝 ℏ

At this point, we have only shown that the momentum eigenstate (of a free particle) 
is a plane wave, with the phase velocity equal to its classical velocity 𝑣𝑣 = ⁄𝑝𝑝 𝑚𝑚. Now, 
let’s find the wave vector of this plane wave: 

By definition 𝜔𝜔 = 𝐸𝐸/ℏ from time evolution

ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖−𝜔𝜔𝑡𝑡) ψ𝑝𝑝 𝑑𝑑, 0 = ψ𝑝𝑝 𝑑𝑑 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖Therefore,



ψ𝑝𝑝 𝑑𝑑, 𝑡𝑡 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖−𝜔𝜔𝑡𝑡)

There seems to be an obvious problem: |ψ𝑝𝑝 𝑑𝑑 |2 = |𝐴𝐴|2 and thus ∫−∞
∞ 𝑑𝑑𝑑𝑑|ψ𝑝𝑝 𝑑𝑑 |2 = ∞.

We need to re-examine normalization.
For a physical quantity Q represented by an operator Q, with N discrete eigenvalues 𝑞𝑞1, 𝑞𝑞2, 
…, 𝑞𝑞𝑛𝑛, …, corresponding to N eigenstates |𝑞𝑞1〉, |𝑞𝑞2〉, …, |𝑞𝑞𝑛𝑛〉, …, we have Q|𝑞𝑞𝑛𝑛〉 = 𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛〉. 
This can be written in the matrix form.

The state space is N-dimensional, and N may be infinity.

But, how do we handle situations where the eigenvalue spectrum is continuous?

The orthonormal condition is formally written as 〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = δ𝑛𝑛,𝑛𝑛′ ≡ �
0, 𝑛𝑛 ≠ 𝑛𝑛𝑛
1, 𝑛𝑛 = 𝑛𝑛𝑛 . 

ψ𝑝𝑝 𝑑𝑑, 0 = ψ𝑝𝑝 𝑑𝑑 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

How?



| 𝑑𝑑𝑛 〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑 δ(x− x′)|x〉

Example
The wave function of a particle exactly localized at a particular location x′ is δ(x− x′).  

Consider another state |𝑑𝑑𝑛𝑛 〉, in which the particle is localized at 𝑑𝑑𝑛𝑛.

How do we handle situations where the eigenvalue spectrum is continuous?

For eigenstates with a discrete eigenvalue spectrum, the orthonormal condition is:

〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = δ𝑛𝑛,𝑛𝑛′ ≡ �
0, 𝑛𝑛 ≠ 𝑛𝑛𝑛
1, 𝑛𝑛 = 𝑛𝑛𝑛

〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x− x′ ) ≡ �0, 𝑑𝑑 ≠ 𝑑𝑑𝑛
∞, 𝑑𝑑 = 𝑑𝑑𝑛

Notice that ∫−∞
∞ 𝑑𝑑𝑑𝑑 δ(x− x′ ) = 1.

Mathematical interpretation: Since ∫−∞
∞ 𝑑𝑑𝑑𝑑 δ(x− x′)f(𝑑𝑑) = f(𝑑𝑑𝑛), we have ∫−∞

∞ 𝑑𝑑𝑑𝑑 δ(x− x′)|x〉 = |𝑑𝑑𝑛 〉 . 

〈𝑑𝑑𝑛𝑛|𝑑𝑑𝑛〉 = 〈𝑑𝑑𝑛𝑛|∫−∞
∞ 𝑑𝑑𝑑𝑑 δ(x− x′ )|x〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑 δ(x− x′ ) 〈𝑑𝑑𝑛𝑛|x〉

= ∫−∞
∞ 𝑑𝑑𝑑𝑑 δ(x− x′) δ(x−𝑑𝑑𝑛𝑛) = δ(𝑑𝑑′− 𝑑𝑑𝑛𝑛) = δ(𝑑𝑑′′− 𝑑𝑑𝑛)

𝑑𝑑𝑛𝑛→ x ⇒ 〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x− x′ )
This exercise is to show consistency of the definition of normalization for the continuous case, 
not attempting at any mathematical “proof”. 

What’ the unit of δ(x)?



Continuous   Discrete

〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x− x′ ) ≡ �0, 𝑑𝑑 ≠ 𝑑𝑑𝑛
∞, 𝑑𝑑 = 𝑑𝑑𝑛

∫−∞
∞ 𝑑𝑑𝑑𝑑 〈𝑑𝑑|𝑑𝑑𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑 δ(x− x′ ) = 1

𝑑𝑑𝑛
x

𝑛𝑛𝑛
n

∑𝑛𝑛 〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = ∑𝑛𝑛 δ𝑛𝑛,𝑛𝑛′ = 1 

Now you see, the two definitions of normalization are indeed equivalent.

Recall that δ(x− x′ ) is the limiting case of a “pulse” (actually “packet” in space) at 𝑑𝑑𝑛.  

The definition is general, not just for position 𝑑𝑑.  Applied to momentum: 〈𝑝𝑝|𝑝𝑝𝑛〉 = δ(p− p′ ). 

Now we can re-examine the normalization of our momentum eigenstate |p〉:

|p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉

For more details about dimensions/units, see the FYI slides below (not discussed in class).

〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = δ𝑛𝑛,𝑛𝑛′ ≡ �
0, 𝑛𝑛 ≠ 𝑛𝑛𝑛
1, 𝑛𝑛 = 𝑛𝑛𝑛

System in a particular eigenstate Particle at a particular location



Re-examine the normalization of our momentum eigenstate |p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉

Let 〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑐𝑐𝑝𝑝 is the normalization constant.

〈𝑝𝑝|𝑝𝑝𝑛〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝∗ 𝑑𝑑 〈𝑑𝑑| ∫−∞

∞ 𝑑𝑑𝑑𝑑𝑛ψ𝑝𝑝′ 𝑑𝑑𝑛 |𝑑𝑑𝑛〉

= ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖〈𝑑𝑑| ∫−∞

∞ 𝑑𝑑𝑑𝑑𝑛𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖𝑖𝑖
′𝑖𝑖′|𝑑𝑑𝑛〉

=∫−∞
∞ 𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 ∫−∞

∞ 𝑑𝑑𝑑𝑑𝑛𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖𝑖𝑖
′𝑖𝑖′〈𝑑𝑑|𝑑𝑑𝑛〉

=∫−∞
∞ 𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 ∫−∞

∞ 𝑑𝑑𝑑𝑑𝑛𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖𝑖𝑖
′𝑖𝑖′ δ(x′− x)

= ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖𝑖𝑖

′𝑖𝑖

= ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖(𝑖𝑖

′−𝑖𝑖)𝑖𝑖

=  2𝜋𝜋𝑐𝑐𝑝𝑝∗𝑐𝑐𝑝𝑝′ δ(k− 𝑘𝑘′)

= 2𝜋𝜋ℏ𝑐𝑐𝑝𝑝∗𝑐𝑐𝑝𝑝′ δ(p− p′)

= 2𝜋𝜋ℏ|𝑐𝑐𝑝𝑝|2 δ(p− p′ )

= δ(p− p′ )

Notes

Using |p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉

Inserting ψ𝑝𝑝 𝑑𝑑 = 𝑐𝑐𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

Using 〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x′ −x)

Using ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑛 δ(x′− x )f (𝑑𝑑𝑛) = f(𝑑𝑑); f(𝑑𝑑𝑛) = 𝑒𝑒𝑖𝑖𝑖𝑖′𝑖𝑖′

Using ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖(𝑖𝑖′−𝑖𝑖)𝑖𝑖 = 2𝜋𝜋 δ(k−𝑘𝑘′) 

Using δ(ax) = δ(x)/|a| and p = ℏk

𝑐𝑐𝑝𝑝′ = 𝑐𝑐𝑝𝑝 when p = p′

Therefore, 2𝜋𝜋ℏ|𝑐𝑐𝑝𝑝|2 = 1   ⇒ 𝑐𝑐𝑝𝑝 = 1

2𝜋𝜋ℏ
⇒ 〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑 = 1

2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

Taking conjugates for the bra

For more details about dimensions/units, see the FYI slides below (not discussed in class).

see FYI slides



Continuous: Quantity Q has eigenvalues q
corresponding to eigenstates |q〉

Discrete: Quantity Q has eigenvalues 𝑞𝑞𝑛𝑛
corresponding to eigenstates |n〉

〈𝑞𝑞|𝑞𝑞𝑛〉 = δ(q− q′ ) ≡ �0, 𝑞𝑞 ≠ 𝑞𝑞𝑛
∞, 𝑞𝑞 = 𝑞𝑞𝑛

∫−∞
∞ 𝑑𝑑𝑞𝑞 〈𝑞𝑞|𝑞𝑞𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑞𝑞 δ(q− q′ ) = 1

𝑞𝑞𝑛
q

𝑛𝑛𝑛
n

FYI: More on normalization of eigenstates of continuous spectra (not discussed in class) 

〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = δ𝑛𝑛,𝑛𝑛′ are dimensionless. 〈𝑞𝑞|𝑞𝑞𝑛〉 = δ(q− q′ ) are of dimension Q−1.

So, it is reasonable to assign |q〉 the dimension Q−1/2, 
since the bra and ket are of the same dimension.

Now we see, |x〉 is of dimension l−1/2 (l is length), 
and |p〉 is of dimension p−1/2 (p is momentum), if the spectrum for p is continuous. 

Therefore, 〈𝑑𝑑|𝑝𝑝〉 is of dimension (lp)−1/2. 

〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑 = 1

2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

Recall that ℏ has the dimension of angular momentum, which is (lp)−1/2.
Thus we see, 〈𝑑𝑑|𝑝𝑝〉 is indeed of dimension (lp)−1/2. 

〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = δ𝑛𝑛,𝑛𝑛′ ≡ �
0, 𝑛𝑛 ≠ 𝑛𝑛𝑛
1, 𝑛𝑛 = 𝑛𝑛𝑛

∑𝑛𝑛 〈𝑞𝑞𝑛𝑛|𝑞𝑞𝑛𝑛′〉 = ∑𝑛𝑛 δ𝑛𝑛,𝑛𝑛′ = 1 



In general, for any Q with a continuous spectrum, |q〉 is of dimension Q−1/2 and 〈𝑑𝑑|𝑞𝑞〉 is of dimension 
(lQ)−1/2. 

On the other hand, for any Q with a discrete spectrum, |n〉 is of dimensionless and 〈𝑑𝑑|𝑛𝑛〉 is of 
dimension l−1/2. 

With 𝑝𝑝 = ℏ𝑘𝑘, let’s now examine |p〉 and |k〉.

|p〉 dimension p−1/2 (p is momentum), 
|k〉 dimension (l−1)−1/2. 

〈𝑝𝑝|𝑝𝑝𝑛〉 = δ(p− p′ ) ≡ �0, 𝑝𝑝 ≠ 𝑝𝑝𝑛
∞, 𝑝𝑝 = 𝑝𝑝𝑛

∫−∞
∞ 𝑑𝑑𝑝𝑝 〈𝑝𝑝|𝑝𝑝𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑝𝑝 δ(p− p′ ) = 1

𝑝𝑝𝑛
p

〈𝑝𝑝|𝑝𝑝𝑛〉 = δ(p− p′ ) are of dimension p−1.

〈𝑘𝑘|𝑘𝑘𝑛〉 = δ(k− k′ ) ≡ �0, 𝑘𝑘 ≠ 𝑘𝑘𝑛
∞, 𝑘𝑘 = 𝑘𝑘𝑛

∫−∞
∞ 𝑑𝑑𝑘𝑘 〈𝑘𝑘|𝑘𝑘𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑘𝑘 δ(k− k′ ) = 1

𝑘𝑘𝑛
k

〈𝑘𝑘|𝑘𝑘𝑛〉 = δ(k− k′ ) are of dimension (l−1)−1.

∫−∞
∞ 𝑑𝑑𝑝𝑝 〈𝑝𝑝|𝑝𝑝𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑝𝑝 δ(p− p′ ) = ∫−∞
∞ 𝑑𝑑(ℏ𝑘𝑘) δ(ℏk−ℏk′ ) = ∫−∞

∞ 𝑑𝑑𝑘𝑘 δ(k− k′ ) = ∫−∞
∞ 𝑑𝑑𝑘𝑘 〈𝑘𝑘|𝑘𝑘𝑛〉 = 1

Using δ(ax) = δ(x)/|a| and p = ℏk

FYI (not discussed in class) 



∫−∞
∞ 𝑑𝑑𝑝𝑝 〈𝑝𝑝|𝑝𝑝𝑛〉 = ∫−∞

∞ 𝑑𝑑𝑝𝑝 δ(p− p′ ) = ∫−∞
∞ 𝑑𝑑(ℏ𝑘𝑘) δ(ℏk−ℏk′ ) = ∫−∞

∞ 𝑑𝑑𝑘𝑘 δ(k− k′ ) = ∫−∞
∞ 𝑑𝑑𝑘𝑘 〈𝑘𝑘|𝑘𝑘𝑛〉 = 1

Using δ(ax) = δ(x)/|a| and p = ℏk

FYI (not discussed in class) 

〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑 = 1

2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

⇒ 𝑑𝑑𝑝𝑝 〈𝑝𝑝|𝑝𝑝𝑛〉 = 𝑑𝑑𝑘𝑘 〈𝑘𝑘|𝑘𝑘𝑛〉

〈𝑘𝑘|𝑘𝑘𝑛〉 = 𝑑𝑑𝑝𝑝
𝑑𝑑𝑖𝑖

〈𝑝𝑝|𝑝𝑝𝑛〉 = ℏ〈𝑝𝑝|𝑝𝑝𝑛〉⇒ |𝑘𝑘〉 = ℏ|𝑝𝑝〉⇒

ψ𝑖𝑖 𝑑𝑑 ≡ 〈𝑑𝑑|𝑘𝑘〉 = ℏ 〈𝑑𝑑|𝑝𝑝〉 = 1

2𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖⇒

Wave function of state |𝑝𝑝〉 Wave function of state |𝑘𝑘〉

An arbitrary state |ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ 𝑑𝑑 |x〉 can be expanded as a linear combination of states |𝑝𝑝〉

or a linear combination of states |𝑘𝑘〉. 
Try to appreciate as much of the following as you can. 
We will be kind of “derive” the Fourier transform.

ψ 𝑑𝑑 = 〈𝑑𝑑|ψ〉

|ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ 𝑑𝑑 |x〉

insert |ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑〈𝑑𝑑|ψ〉 |x〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉⇒

∫−∞
∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|=1 can be viewed as 

an identity operator. All |x〉 make a 
complete basis set.



To expand an arbitrary state |ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑〈𝑑𝑑|ψ〉 |x〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉 as a linear combination of states |𝑝𝑝〉, 
we need to find the “weights” 〈𝑝𝑝|ψ〉 ≡ 𝜙𝜙𝑝𝑝(𝑝𝑝). 

FYI (not discussed in class) 

⇒ 𝜙𝜙𝑝𝑝(𝑝𝑝) ≡ 〈𝑝𝑝|ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑 [ψ𝑝𝑝 𝑑𝑑 ]∗ψ 𝑑𝑑 = 1

2𝜋𝜋ℏ ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

𝜙𝜙(𝑘𝑘) ≡ 〈𝑘𝑘|ψ〉 = 〈𝑘𝑘|∫−∞
∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑〈𝑘𝑘|x〉 〈𝑑𝑑|ψ〉 =  ∫−∞
∞ 𝑑𝑑𝑑𝑑 (〈𝑑𝑑|k〉)∗ 〈𝑑𝑑|ψ〉

𝜙𝜙𝑝𝑝(𝑝𝑝) ≡ 〈𝑝𝑝|ψ〉 = 〈𝑝𝑝|∫−∞
∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑〈𝑝𝑝|x〉 〈𝑑𝑑|ψ〉 =  ∫−∞
∞ 𝑑𝑑𝑑𝑑 (〈𝑑𝑑|p〉)∗ 〈𝑑𝑑|ψ〉

ψ 𝑑𝑑 = 〈𝑑𝑑|ψ〉

insert

〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑 = 1

2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

insert

We put a subscript p here just to make 𝜙𝜙𝑝𝑝(𝑝𝑝) look different 
from 𝜙𝜙(𝑘𝑘), the weights of |ψ〉 when expanded onto |k〉.

You see, this is simply the Fourier transform from “space domain” to “momentum domain”:

𝜙𝜙𝑝𝑝(𝑝𝑝) ≡ 〈𝑝𝑝|ψ〉 = 1

2𝜋𝜋ℏ ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

Alternatively, we can expand |ψ〉 as a linear combination of states |𝑘𝑘〉, with “weights” 〈𝑘𝑘|ψ〉 ≡ 𝜙𝜙(𝑝𝑝). 



𝜙𝜙(𝑘𝑘) ≡ 〈𝑘𝑘|ψ〉 = 〈𝑘𝑘|∫−∞
∞ 𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉 = ∫−∞

∞ 𝑑𝑑𝑑𝑑〈𝑘𝑘|x〉 〈𝑑𝑑|ψ〉 =  ∫−∞
∞ 𝑑𝑑𝑑𝑑 (〈𝑑𝑑|k〉)∗ 〈𝑑𝑑|ψ〉

ψ𝑖𝑖 𝑑𝑑 ≡ 〈𝑑𝑑|𝑘𝑘〉 = ℏ 〈𝑑𝑑|𝑝𝑝〉 = 1

2𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ψ 𝑑𝑑 = 〈𝑑𝑑|ψ〉

insert insert

⇒ 𝜙𝜙(𝑘𝑘)≡ 〈𝑘𝑘|ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑 [ψ𝑖𝑖 𝑑𝑑 ]∗ψ 𝑑𝑑 = 1

2𝜋𝜋 ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

This is simply the Fourier transform from “space domain” to “wavevector domain”:

𝜙𝜙𝑝𝑝(𝑝𝑝) ≡ 〈𝑝𝑝|ψ〉 = 1

2𝜋𝜋ℏ ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

You see, there is a difference in the pre-factor.

FYI (not discussed in class) 

𝜙𝜙(𝑘𝑘) ≡ 〈𝑘𝑘|ψ〉 = 1

2𝜋𝜋 ∫−∞
∞ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

Compare this with the Fourier transform to “momentum domain”:

These are the conclusions relevant to our following discussion on wave packets.

We just discovered Fourier transformation! 



Added notes: Calculate the inner product of two states by their wave forms

〈𝑝𝑝|𝑝𝑝′〉 =�
−∞

∞
𝑑𝑑𝑑𝑑|x𝑑𝑑|ψ〉 = �

−∞

∞
𝑑𝑑𝑑𝑑𝑐𝑐𝑝𝑝∗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑝𝑝′𝑒𝑒𝑖𝑖𝑖𝑖

′𝑖𝑖 = �
−∞

∞
𝑑𝑑𝑑𝑑ψ𝑝𝑝∗ 𝑑𝑑 ψ𝑝𝑝′ 𝑑𝑑𝑛 ,

On slide 32, we showed that 〈𝑝𝑝|𝑝𝑝𝑛〉 = δ(p− p′ ), by actually showing that 

〈ψ1|ψ2〉 =�
−∞

∞
𝑑𝑑𝑑𝑑 〈𝑑𝑑| ψ1∗ 𝑑𝑑 �

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 |x'〉

=�
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 〈𝑑𝑑|�

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 |x′〉 =�

−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 �

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 〈𝑑𝑑|𝑑𝑑′〉

=�
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 �

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 𝛿𝛿 𝑑𝑑 − 𝑑𝑑𝑛

where ψ𝑝𝑝 = 〈𝑑𝑑|𝑝𝑝〉 thus |p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉.

This is just a special case of the inner product of two states: 〈ψ1|ψ2〉 =�
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 ψ2 𝑑𝑑𝑛

Here, we give the proof for the general case.

For an arbitrary state |ψ〉, we have it wave function ψ 𝑑𝑑 = 〈𝑑𝑑|ψ〉 thus |ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ 𝑑𝑑 |x〉. 

Therefore, the bra 〈ψ1|=∫−∞
∞ 𝑑𝑑𝑑𝑑 〈𝑑𝑑|ψ1∗ 𝑑𝑑 .

Since we are handling two independent integrals, we write the ket as |ψ2〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ2 𝑑𝑑 |x〉. 

Thus, 
By inserting the above. 

Using 〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x′ −x) (to be cont’d)



〈ψ1|ψ2〉 =�
−∞

∞
𝑑𝑑𝑑𝑑 〈𝑑𝑑| ψ1∗ 𝑑𝑑 �

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 |x'〉

=�
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 �

−∞

∞
𝑑𝑑𝑑𝑑𝑛ψ2 𝑑𝑑𝑛 𝛿𝛿 𝑑𝑑 − 𝑑𝑑𝑛

= �
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 ψ2 𝑑𝑑 By using Using ∫−∞

∞ 𝑑𝑑𝑑𝑑𝑛 δ(x′− x )f (𝑑𝑑𝑛) = f(𝑑𝑑)

QED.

We sometimes need to find the “matrix element” of an operator 𝑄𝑄12 = ψ1 Q ψ2 . 
This is just the inner product of state |ψ1〉, represented by bra 〈ψ1| here and a new state 
Q|ψ2〉. Therefore, 

𝑄𝑄12 = ψ1 Q ψ2 = �
−∞

∞
𝑑𝑑𝑑𝑑ψ1∗ 𝑑𝑑 Qψ2 𝑑𝑑 .

In the special case |ψ1〉 = |ψ2〉 = |ψ〉, we find the average for quantity 𝑄𝑄 in state |ψ〉: 

𝑄𝑄 = �
−∞

∞
𝑑𝑑𝑑𝑑ψ∗ 𝑑𝑑 Qψ 𝑑𝑑 .



We introduced the Schrödinger equation in the wave function form in a hand-waving manner. 
Finally, we can now justify the following: 

p|p〉 = 𝑝𝑝|p〉

momentum operator momentum eigenvalue

momentum eigenstate corresponding to eigenvalue p

Let |p〉 be an momentum eigenstate with eigenvalue p, we can then write:  

Re-examine the wave function form of Schrödinger equation  

〈𝑑𝑑|p|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉 p 〈𝑑𝑑|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉

This step will be discussed later.

Inserting the wave function of the momentum eigenstate 〈𝑑𝑑|𝑝𝑝〉 ≡ ψ𝑝𝑝 𝑑𝑑 , we get:

pψ𝑝𝑝 𝑑𝑑 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑 (1)

p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑“Knowing” ψ𝑝𝑝 𝑑𝑑 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 with 𝑘𝑘 = ⁄𝑝𝑝 ℏ, we concluded 

Now.



〈𝑑𝑑| p∫−∞
∞ 𝑑𝑑𝑑𝑑𝑛ψ𝑝𝑝 𝑑𝑑𝑛 |𝑑𝑑𝑛〉 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑

|p〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ𝑝𝑝 𝑑𝑑 |x〉

Consider x’ as the variable to be integrated over 
and x as a particular value

⇒ p∫−∞
∞ 𝑑𝑑𝑑𝑑𝑛ψ𝑝𝑝 𝑑𝑑𝑛 〈𝑑𝑑|𝑑𝑑𝑛〉 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑

Using 〈𝑑𝑑|𝑑𝑑𝑛〉 = δ(x′− x)⇒ p∫−∞
∞ 𝑑𝑑𝑑𝑑𝑛ψ𝑝𝑝 𝑑𝑑𝑛 δ(x′− x) = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑

No state vectors in this equation now; we consider pψ𝑝𝑝 𝑑𝑑 as 
the operator operating on the function ψ𝑝𝑝 𝑑𝑑 , which can be 
viewed as an infinite-dimensional 1-column matrix, i.e. vector.

⇒ pψ𝑝𝑝 𝑑𝑑 = 𝑝𝑝ψ𝑝𝑝 𝑑𝑑

This is the momentum eigenvalue equation in the wave function form.  
(Only a free particle is in a momentum eigenstate.)

p|p〉 = 𝑝𝑝|p〉 〈𝑑𝑑|p|𝑝𝑝〉 = 𝑝𝑝 〈𝑑𝑑|𝑝𝑝〉

〈𝑑𝑑|𝑝𝑝〉 = ψ𝑝𝑝 𝑑𝑑
insert

Using ∫−∞
∞ 𝑑𝑑𝑑𝑑′𝑓𝑓 𝑑𝑑𝑛 δ(x′− x) = 𝑓𝑓 𝑑𝑑



p = −𝑖𝑖ℏ
𝑑𝑑
𝑑𝑑𝑑𝑑

We already know ψ𝑝𝑝 𝑑𝑑 = 1

2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.  

We also know that the derivative of an exponential function ∝ itself. 
Taking care of prefactors as we did, we got:



For simplicity, we considered a free particle in 1D. Its normalized wave function is 
a plane wave propagating at a velocity 𝑣𝑣 = 𝑝𝑝/𝑚𝑚 =ℏ𝑘𝑘/𝑚𝑚:  

ψ𝑝𝑝 𝑑𝑑 =
1
2𝜋𝜋ℏ

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

We now extend this into 3D. The normalized wave function is:  

ψ𝐩𝐩 𝒓𝒓 = 1

2𝜋𝜋ℏ

3
𝑒𝑒𝑖𝑖𝒌𝒌�𝒓𝒓, where r = 𝑑𝑑�𝒙𝒙 + 𝑦𝑦�𝒚𝒚 + 𝑧𝑧�𝒛𝒛 and k = 𝑘𝑘𝑖𝑖�𝒙𝒙 + 𝑘𝑘𝑦𝑦�𝒚𝒚 + 𝑘𝑘𝑧𝑧�𝒛𝒛

Just a plane wave propagating in the direction of k at a velocity 𝒗𝒗 = 𝒑𝒑/𝑚𝑚 =ℏ𝒌𝒌/𝑚𝑚.  

Does this make sense?
A free particle in free space moving at a velocity 𝒗𝒗 = 𝒑𝒑/𝑚𝑚 =ℏ𝒌𝒌/𝑚𝑚, yet it is all over 

the place with an equal probability |ψ𝑝𝑝 𝐫𝐫 |2 = 1
2𝜋𝜋ℏ

3
for all r. The overall probability 

is ∫−∞
∞ 𝑑𝑑𝑑𝑑|ψ𝐩𝐩 𝑑𝑑 |2 = ∞.

We encountered similar situations in classical physics. Consider an electromagnetic (EM) 
plane wave propagating at a velocity 𝒗𝒗 =(𝜔𝜔

𝑖𝑖
)�𝒌𝒌. The intensity |𝑬𝑬 𝒓𝒓 |2 = constant for all r. 

The overall power ∝ ∫𝑑𝑑3𝒓𝒓 |𝑬𝑬 𝒓𝒓 |2 = ∞. We should have complained!

Yes, it makes sense.

Particle as wave packet We paused here on Tue 2/14/2023.



An EM pulse is a wave packet; an electron is a wave packet (see animation next page).   
To keep it simple, we go back to 1D.  

By Fourier transformation, an arbitrary state |ψ〉 = ∫−∞
∞ 𝑑𝑑𝑑𝑑ψ 𝑑𝑑 |x〉 is expanded as 

a linear combination of plane wave states |𝑘𝑘〉, with the “weights” 〈𝑘𝑘|ψ〉 ≡ 𝜙𝜙(𝑘𝑘): 

𝜙𝜙 𝑘𝑘 ≡ 〈𝑘𝑘|ψ〉 =
1
2𝜋𝜋

�
−∞

∞
𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖ψ 𝑑𝑑

ψ 𝑑𝑑 =
1
2𝜋𝜋

�
−∞

∞
𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝜙𝜙(𝑘𝑘)

This is similar to the Fourier transform between a time domain signal and its frequency 
spectrum. Wave vector k is the spatial equivalent of angular frequency.  

For a time-domain pulse, the product of pulse width and its spectral width Δ𝑡𝑡Δ𝜔𝜔 ~ 1.  

Similarly for a wave packet, the product of packet width and its spectral width, Δ𝑑𝑑Δ𝑘𝑘 ~ 1.  
Since 𝑝𝑝 = ℏ𝑘𝑘, we have Δ𝑑𝑑 Δ𝑝𝑝 ~ ℏ .

The “uncertainty principle” of position and momentum

〈𝑘𝑘|ψ〉 = �
−∞

∞
𝑑𝑑𝑑𝑑ψ 𝑑𝑑 〈𝑘𝑘|x〉 〈𝑘𝑘|x〉 = 〈𝑑𝑑|k〉∗ = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖insert

The inverse transformation: The spectrum, i.e. amplitudes 
of plane waves |𝑘𝑘〉.



Let’s first visually appreciate the propagation of a wave packet through space and time.  
(Dispersionless first, for simplicity)

Now consider wave packet propagation mathematically.  

ψ 𝑑𝑑, 0 =ψ 𝑑𝑑 =
1
2𝜋𝜋

�
−∞

∞
𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝜙𝜙(𝑘𝑘)

ψ 𝑑𝑑, 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡ψ 𝑑𝑑 =
1
2𝜋𝜋

�
−∞

∞
𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖−𝜔𝜔𝑡𝑡) 𝜙𝜙(𝑘𝑘)

https://en.wikipedia.org/wiki/Wave_packet

If 𝜔𝜔 ∝ |𝑘𝑘|, e.g., 𝜔𝜔 = 𝑐𝑐|𝑘𝑘| for EM waves in free space,  

E 𝑑𝑑, 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡E 𝑑𝑑 =
1
2𝜋𝜋

�
−∞

∞
𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖(𝑖𝑖−𝑐𝑐𝑡𝑡) 𝜙𝜙(𝑘𝑘)

The wave packet E 𝑑𝑑 = 1

2𝜋𝜋 ∫−∞
∞ 𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝜙𝜙(𝑘𝑘) simply moves at the phase velocity c

without changing its shape.  This is the dispersionless case.

For visualization, closely watch the above animation (A wave packet without dispersion) 
at https://en.wikipedia.org/wiki/Wave_packet.

https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Wave_packet


Wave packet dispersion
For EM waves in a general medium or the electron (or any particle) wave ψ 𝑑𝑑, 𝑡𝑡 , 𝜔𝜔 = 𝜔𝜔(𝑘𝑘)
is nonlinear. The wave packet will propagate, but its shape will change and the packet will 
distort and broaden.  
This phenomenon is called dispersion. 

For visualization, closely watch a second 
animation (A wave packet with dispersion) at 
https://en.wikipedia.org/wiki/Wave_packet
and compare with the first one (A wave 
packet without dispersion; copied here for 
easy comparison).

A wave packet without dispersion A wave packet with dispersion

For the electron (or any particle) wave ψ 𝑑𝑑, 𝑡𝑡 , called the de Broglie wave,
𝜔𝜔 = 𝜔𝜔(𝑘𝑘) is very nonlinear! 𝜔𝜔 ∝ 𝑘𝑘2 ⇒ very dispersive!

https://en.wikipedia.org/wiki/Wave_packet


A true understanding of wave packets, interference, group velocity, uncertain principle, etc.  

https://phys.libretexts.org/TextBooks_and_TextMa
ps/University_Physics/Book%3A_University_Physics
_(OpenStax)/Map%3A_University_Physics_III_-
_Optics_and_Modern_Physics_(OpenStax)/7%3A_Q
uantum_Mechanics/7.2%3A_The_Heisenberg_Unce
rtainty_Principle

Illustration adapted from an image at 

The center of the wave packet is where all plane waves of 
different k (or wavelength) are in phase.

If 𝜔𝜔 ∝ |𝑘𝑘|, all plane waves propagate 
at the same phase velocity. Therefore, 
the center moves at the same speed. 
No dispersion.

(constructively interfere)

plane waves of 
central wavevector 𝑘𝑘𝑐𝑐

ψ 𝑑𝑑, 𝑡𝑡 = 1

2𝜋𝜋 ∫−∞
∞ 𝑑𝑑𝑘𝑘𝑒𝑒𝑖𝑖[𝑖𝑖𝑖𝑖−𝜔𝜔(𝑖𝑖)𝑡𝑡] 𝜙𝜙(𝑘𝑘)

At the wave packet center 𝑑𝑑𝑐𝑐, constructive 
interference requires 𝜕𝜕

𝜕𝜕𝑖𝑖
[𝑘𝑘𝑑𝑑𝑐𝑐 − 𝜔𝜔(𝑘𝑘)𝑡𝑡] = 0.

⇒ 𝑑𝑑𝑐𝑐 −
𝑑𝑑𝜔𝜔
𝑑𝑑𝑖𝑖
𝑡𝑡 = 0

⇒ 𝑑𝑑𝑐𝑐 = 𝑑𝑑𝜔𝜔
𝑑𝑑𝑖𝑖
𝑡𝑡

Thus, the center of the wave packet moves at a speed  𝑑𝑑𝜔𝜔
𝑑𝑑𝑖𝑖

≡ 𝑣𝑣𝑔𝑔 , called the group velocity.



With dispersion, while the center of the wave packet moves at the group velocity 𝑑𝑑𝜔𝜔
𝑑𝑑𝑖𝑖

≡ 𝑣𝑣𝑔𝑔, 
the relative phase of a component plane wave k with regard to the plane wave of central 
wave vector 𝑘𝑘𝑐𝑐 varies with time. 

Therefore, the wave packet changes shape and usually broadens.  
For visualization, again closely watch the second animation (A wave packet with dispersion) 
at https://en.wikipedia.org/wiki/Wave_packet.

For the electron (or any particle) wave ψ 𝑑𝑑, 𝑡𝑡 , called the de Broglie wave,
𝜔𝜔 = 𝜔𝜔(𝑘𝑘) is very nonlinear! 𝜔𝜔 ∝ 𝑘𝑘2 ⇒ very dispersive!

For visualization, closely watch animation at https://en.wikipedia.org/wiki/Wave_packet
under Gaussian wave packets in quantum mechanics:
https://en.wikipedia.org/wiki/Wave_packet#/media/File:Wavepacket1.gif

This is the real (or imaginary) part only.

Blue: component plane waves

Red: wave packet

https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Wave_packet#/media/File:Wavepacket1.gif


The wave function is complex. So for a full picture, watch the third animation 
under the same heading:
https://en.wikipedia.org/wiki/Wave_packet#/media/File:Wavepacket-a2k4-en.gif

Recall that |ψ 𝑑𝑑 |2 is the probability density. To see how the envelope of 
probability density propagates and evolves, watch the animation under the 
heading Basic behaviors: subheading Dispersive:
https://en.wikipedia.org/wiki/Wave_packet#/media/File:Guassian_Dispersion.gif

https://en.wikipedia.org/wiki/Wave_packet#/media/File:Wavepacket-a2k4-en.gif
https://en.wikipedia.org/wiki/Wave_packet#/media/File:Guassian_Dispersion.gif


Highlights and Remarks

Quantum mechanics is not weird.
We are familiar with waves, superposition, and coherence.

A possible reason it may look hard/weird: 
For other waves, both the amplitude and the intensity are observable quantities. 
In quantum mechanics, the amplitude per se is not observable while the analog of 
intensity is probability. 

Analogy helps. Stationary states are like modes of electromagnetic wave. 
But, we also notice differences. 

Physical quantities are real. ⇒Amplitudes of other waves are real. We use 
complex numbers as a math tool. For example, a single tone is the sum of a 
positive- and a negative-frequency Fourier component. 
Amplitudes in quantum mechanics are complex. 

Schrödinger equation vs. other wave equations.

i vs. j as −1.

𝛁𝛁2ψ 𝐫𝐫 = −
2𝑚𝑚
ℏ2

[ℏ𝜔𝜔 − 𝑉𝑉 𝐫𝐫 ]ψ 𝐫𝐫 𝛁𝛁2ψ 𝐫𝐫 = −
𝜔𝜔2

𝑐𝑐2 𝑛𝑛
2ψ 𝐫𝐫vs. for stationary states.

𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡vs. 

𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖−𝜔𝜔𝑡𝑡) 𝑒𝑒𝑗𝑗(𝜔𝜔𝑡𝑡−𝑖𝑖𝑖𝑖)vs. 

Refractive index

A quantity e.g. Ez, V or I
in 1D transmission line

There are no 1D dielectric cavities!



We are familiar with the vector space, linear algebra.
Again, complex amplitudes per se are not observable in quantum mechanics.

Amplitudes in quantum mechanics are complex. 
Inner products involve taking complex conjugates.

(The bra is the conjugate transpose of the ket)
Complex amplitudes are used elsewhere for mathematical convenience. 

Limited scope of Part I and Part II this QM primer: one-particle
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