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Without the possibly time variant external stimulus 𝑉 ୶୲ ሼ𝐫௜ሽ, ሼ𝐑௝ሽ, 𝑡 , the stationary equation

𝑖ℏ
𝜕
𝜕𝑡 ሼ𝐫௜ሽ, ሼ𝐑௝ሽ, 𝑡 ൌ 𝑯൅ 𝑉 ୶୲ ሼ𝐫௜ሽ, ሼ𝐑௝ሽ, 𝑡  ሼ𝐫௜ሽ, ሼ𝐑௝ሽ, 𝑡

𝑯 𝐫௜ , ሼ𝐑௝ሽ ൌ 𝐸 𝐫௜ , ሼ𝐑௝ሽ

5 ൈ 10ଶଷ atoms/cm3 in Si. Cannot separate variables due to interaction terms. 
Simply hopeless to solve the differential equation with ~10ଶଷ variables.  

𝐩௜ = െ𝑖ℏ𝛻௜
𝐏௝ = െ𝑖ℏ𝛻௝
Each 3D.

metal



Simplifying approximations

1. The Born-Oppenheimer approximation
Consider fixed nuclei. Solve Schrödinger equations for varied fixed nuclear positions, 
and then handle nuclear motion later.  
Justification: proton to electron mass ratio = 1836

The electron Hamiltonian

e-e interaction electron-nucleus Coulomb interaction
Still ~10ଶଷ variables, unsolvable.  

2. The mean-field (single-electron) approximation
Every electron experiences the same average potential V(r) due to all nuclei 
and all other electrons.

Discrete bound eigenstates confined in solid

Our choice of V(r) determines eigenstates and eigenvalues.



3. Atomic core, effective Z, pseudopotential
Inner-shell electrons tightly bound. Consider nucleus & inner-shell electrons as the core. 

Al: Z = 13, 1s2 2s22p6 3s23p1,  Zeff = 3, 2s22p1

C: Z = 6, 1s2 2s22p2  Zeff = 4, 2s22p2

Si: Z = 14, 1s2 2s22p6 3s23p2,  Zeff = 4, 2s22p2

But, the valence electrons wander into the core. 

|𝑟𝑅௡௟ 𝑟 |ଶ

https://d2jmvrsizmvf4x.cloudfront.net/oVigeAgPQwC2STwkBOQr_01__100.png

Use the pseudopotential instead of 
the Coulomb potential for each core.



https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2011_Methods_for_calculating_band_structure.pdf



The simplest theory: Drude model

A classical theory proposed in 1900.  Still widely used for metals. 
In retrospect, we can justify the classical treatment with understanding of QM. 

https://infogr.am/how-does-bond-structure-affect-melting-point

• Ion cores are fixed. 
• Valence electrons are free inside the metal.
• Therefore, a free electron gas in a box.

1 mole ൌ 6.02 ൈ 10ଶଷ atoms ൌ 𝑀஺ (atomic mass)

𝑛 ൌ
𝑁
𝑉 ൌ 6.02 ൈ 10ଶଷ ൈ

𝜌௠
𝑀஺

𝑍

𝑛 ൌ
𝑁
𝑉 ൌ 6.02 ൈ 10ଶଷ ൈ

2.7 g/cmଷ

27 g ൈ 3 ൌ 1.8 ൈ 10ଶଷ/cmଷ

Mass density

Charge of ion core
(i.e. # valence electrons per ion)

For Al,

• The free electron gas treated as an ideal gas (non-interacting) 
• Thermal speed 𝑣௧௛ at temperature T.
• Each electron collides with something in time 𝜏 on average, thermalized.



In presence of applied electric field E, each electron gains average net drift velocity

𝐯ୢ ൌ െ
𝑞𝐄𝜏
𝑚

𝐉 ൌ 𝑛𝑞𝐯ୢ ൌ െ
𝑞ଶ𝑛𝜏
𝑚 𝐄  1

𝜌 ൌ 𝜎 ൌ
𝑞ଶ𝑛𝜏
𝑚

 𝜏 ൌ
𝑚

𝑞ଶ𝑛𝜌

A Homework 4 problem:
For Al, 𝜌 ൌ 3 ൈ 10ି଻ Ω cm. Use n we just found, to calculate 𝜏. 
Caution: Pay close attention to units.  
You should get something around 10ିଵସ s.

Sanity check of this model:

1
2𝑚𝑣௧௛

ଶ ൌ
3
2 𝑘஻𝑇

~ 0.4 nm
At RT, 𝑣௧௛~10଻ cm/s.
The mean free path 𝑣௧௛𝜏~10ି଻ cm ൌ 1 nm.

Drude thought electrons collided with ions.
This estimate made sense!



But, there’s an issue:
If the mean free path 𝑣௧௛𝜏 ~ constant (determined by structure), then 

𝜌 ∝
1
𝜏 ∝ 𝑣௧௛.


1
2𝑚𝑣௧௛

ଶ ൌ
3
2 𝑘஻𝑇

𝑣௧௛ ∝ 𝑇  𝜌 ∝ 𝑇

Experimental temperature dependence is different.

There are worse discrepancies with experiments, e.g. thermal conductivities. 

Nevertheless, a useful model (when results independent of 𝜏.)

Justification (in retrospect):
• Under the mean-field approximation, electrons are largely independent. 

• With valence electrons wandering around fixed ion cores in metals, the charge-neutral 
environment experienced by each electron justifies the free-electron model. 
o The otherwise free electrons are confined in the interior – particles in a box

• Wave packets of free electrons can be treated as classical particles

𝜏 ൌ െ
𝑚

𝑞ଶ𝑛𝜌



The simplest theory improved: Drude–Sommerfeld model

Drude model assumes Boltzmann distribution – non-interacting electrons

Although nearly independent and free on average, electrons are much closer to each other 
than molecules in ideal gas.

Recall that n ~ 10ଶଷ/cmଷ for metals (e.g. 1.8 ൈ 10ଶଷ/cmଷ for Al).

Exercise
The volume of 1 mole of idea gas under ambient conditions is 22.4 l. 
What is the density (molecules per cmଷ) of the idea gas? 
What is the average distance between nearest molecules?  Compare this to 
the free-electron gas in a metal. 

Answers:
2.6 ൈ 10ଵଽ/cmଷ. 
(1/3) ൈ 10ି଺ cm = 3.3 nm for the ideal gas.
1.8 ൈ 10ି଼ cm = 1.8 Å = 0.18 nm for a metal. 20 times smaller. 

We need to do better accounting of the free electrons.



Quasi-continuous (discrete) energy states of electrons
N independent, free electrons in a box of volume 𝑉 ൌ 𝐿ଷ

N is a large but finite number

𝐤 𝐫 ൌ
1
𝑉
𝑒௜𝐤·𝐫 Normalization in finite volume

Periodic boundary condition

de Broglie wavelength 𝜆 ൌ
2𝜋
𝑘

Small k  large wavelength

𝑘௫𝐿 ൌ 2𝜋𝑛௫ 𝑘௬𝐿 ൌ 2𝜋𝑛௬ 𝑘௬𝐿 ൌ 2𝜋𝑛௭

For large (macroscopic) L, 
exact boundary condition not 
important. 
Discreteness remains. 
Momentum becomes good 
quantum number; k and k
considered separate states. 

Integers (, 0, or +)

𝑘௫ ൌ
2𝜋
𝐿 𝑛௫ 𝑘௬ ൌ

2𝜋
𝐿 𝑛௬ 𝑘௭ ൌ

2𝜋
𝐿 𝑛௭

Each state |k occupies a volume ሺ2𝜋ሻଷ/𝑉 in the wavevector space.

At T = 0, N electrons fill the lowest-energy states up to 𝐤 ൌ 𝑘ி Fermi wavevector

𝑁 ൌ
2 4𝜋

3 𝑘ிଷ

ሺ2𝜋ሻଷ/𝑉
൙  𝑛 ൌ

𝑁
𝑉 ൌ

𝑘ிଷ

3𝜋ଶ

Why?



A Homework 4 problem:

For a 1D metal with N electrons in length L, find a similar relation between 
𝑘ி and electron density 𝑛 ൌ 𝑁/𝐿. 
For a 2D metal with N electrons in area 𝐴 ൌ 𝐿ଶ, find a similar relation 
between 𝑘ி and electron density 𝑛 ൌ 𝑁/𝐴.

The Fermi wavevector corresponds to the Fermi energy. 

This state, where the N electrons fill the N lowest-energy states, 
is the ground state of the N-electron system.

Discreteness of k is due to finite V.
Think about this with pictures of potential wells in mind.

When T > 0, some electrons are excited above the Fermi energy.  
(Terminology: Fermi energy vs chemical potential)



In general, the Fermi level (chemical potential) shifts with varying T. 
For metals, the shift is very small (to be explained later).  

Re-exam Drude model with the improved accounting of electrons

Only electrons near 𝑘 ൌ 𝑘ி (Fermi surface) determine electrical transport behaviors.
Possible dependence of 𝜏 on energy does not have an effect. 

This is one reason why the model works.

The electron speed at 𝑘 ൌ 𝑘ி is called the Fermi velocity 𝑣ி:  ℏ𝑘ி ൌ 𝑚𝑣ி
Therefore, in the improved (Drude-Sommerfeld) model, the mean-free path is

𝑣ி𝜏

A Homework 4 problem:

Find the electron mean free path for Al in ambient conditions 
(using n and 𝜏 found earlier).  

Answer: 16 nm. 

~ 0.4 nmCompare this to the original Drude model result (~1 nm). 
Don’t the electrons collide with ion cores?!



Merits and issues (partial list) of Drude and Drude–Sommerfeld models

Good phenomenological model for DC (meaning 𝜔𝜏 << 1) 
conductivities of metals 

The Fermi distribution changes little at T of interest from T = 0. 
Only those electrons near Fermi energy matter, thus energy-independent 𝜏 are okay. 

Working model for AC conductivities of metals 
Works well especially for properties not dependent on exact 𝜏 values.

For example, optical frequencies usually satisfy 𝜔𝜏 >> 1. 
Once in this regime, the exact value does not matter.

Side note: Drude model is still widely used, e.g., in plasmonics. 
A good book on this topic is 
Stefan A. Maier, Plasmonics: Fundamentals and Applications

Cannot explain T dependence in DC conductivity.

What determines number of conduction electrons? Chemical valence?

Why are some elements not metals? (B not a metal while Al is)

What are the collision mechanisms? Electrons collide with what?



Band theory: independent electrons in periodic potential

To take advantage of the periodic structure of crystalline solids, let’s review the math of 
periodic things.

Periodic functions of time 
(we are familiar with as electrical engineers)

𝑓 𝑡 ൅ 𝑇 ൌ 𝑓ሺ𝑡ሻ

𝜔଴ ൌ 2𝜋/𝑇 Fundamental frequency

𝑓 𝑡 ൌ෍𝐹ሺ𝑛𝜔଴ሻ
௡

𝑒௝௡ఠబ௧

Basis functions

𝐹 𝑛𝜔଴ ൌ
1
𝑇
න 𝑒ି௝௡ఠబ௧𝑓ሺ𝑡ሻ 𝑑𝑡
௧ᇲା்

௧ᇲ

Periodic functions in 1D space

𝜓 𝑥 ൅ 𝐿 ൌ 𝜓ሺ𝑥ሻ

𝑘଴ ൌ 2𝜋/𝐿

𝜓ሺ𝑥ሻ ൌ෍𝛹ሺ𝑛
2𝜋
𝐿 ሻ

௡

𝑒௜௡
ଶగ
௅ ௫

Any wave function that satisfies the periodic 
boundary condition can be written in this form.

𝛹 𝑛
2𝜋
𝐿 ൌ

1
𝐿
න 𝑒ି௜௡

ଶగ
௅ ௫𝜓ሺ𝑥ሻ 𝑑𝑥

௫ᇲା௅

௫ᇲ



t


T

0 = 2/T
Fourier Transform

Spikes happen to disappear. 

Fourier Transform

Fourier transform example



One-electron Schrödinger equations in a 1D periodic potential

െ
ℏଶ

2𝑚
𝑑ଶ

𝑑𝑥ଶ 𝑥 ൅ 𝑉ሺ𝑥ሻ ൌ 𝐸 𝑥

Periodic boundary condition 𝜓 𝑥 ൅ 𝐿 ൌ 𝜓ሺ𝑥ሻ

𝜓ሺ𝑥ሻ ൌ෍𝛹ሺ𝑛௤
2𝜋
𝐿 ሻ

௡೜

𝑒௜௡೜
ଶగ
௅ ௫ ≡෍𝛹ሺ𝑞ሻ

௤

𝑒௜௤௫

Periodic potential 𝑉 𝑥 ൅ 𝑎 ൌ 𝜓ሺ𝑥ሻ due to periodic structure

L = Na; a is unit cell size.

𝑉ሺ𝑥ሻ ൌ෍𝑉෨ሺ𝑙௫
2𝜋
𝑎 ሻ

௟ೣ

𝑒௜௟ೣ
ଶగ
௔ ௫ ≡෍𝑉෨ሺ𝐾ሻ

௄

𝑒௜௄௫

Large period L, small fundamental spatial frequency 2𝜋/𝐿. 

Small period a, large fundamental spatial frequency 2𝜋/𝑎. 

Insert these two Fourier expansions into the Schrödinger equation, and solve it for each q. 

N is the number of atomic periods (unit cells)



𝜓ሺ𝑥ሻ ൌ෍𝛹ሺ𝑛௤
2𝜋
𝐿 ሻ

௡೜

𝑒௜௡೜
ଶగ
௅ ௫ ≡෍𝛹ሺ𝑞ሻ

௤

𝑒௜௤௫

𝑈 𝑞 ് 0 only for 𝑞 ൌ 𝐾 ൌ 𝑙௄
ଶగ
௔

, where 𝑙௄ are integers,
and there are N distinct values of k, with interval 2𝜋/𝐿, in every 2𝜋/𝑎-long zone.

Solving the Schrödinger equation for each q, it is shown that 

𝛹 𝑞 ൌ 𝑈ሺ𝑞 െ 𝑘ሻ, where

0 2𝜋
𝑎

2
2𝜋
𝑎െ

2𝜋
𝑎െ2

2𝜋
𝑎

k

q

Black: 𝑈 𝑞 Red: a set of 𝛹 𝑞 for a particular k

With our knowledge of signals and systems, we immediately see that 
𝜓ሺ𝑥ሻ, with a spectrum 𝛹ሺ𝑞ሻ, is the plane wave 𝑒௜௞௫ sampled by a 
“pulse train” 𝑢 𝑥 :

𝜓 𝑥 ൌ 𝑢ሺ𝑥ሻ𝑒௜௞௫

𝑢 𝑥 is a periodic function (“pulse train”): 𝑢 𝑥 ൅ 𝑎 ൌ 𝑢 𝑥



𝑈 𝐾 is the Fourier transform of 𝑢 𝑥 : 𝑢ሺ𝑥ሻ ൌ෍𝑈ሺ𝑙௄
2𝜋
𝑎 ሻ

௟ೣ

𝑒௜௟಼
ଶగ
௔ ௫ ≡෍𝑈ሺ𝐾ሻ

௄

𝑒௜௄௫

a

You see, a single-frequency “signal” 𝑒௜௞௫ with “frequency” 𝑘 ൌ 𝑛௫
ଶగ
௅

is sampled by 
𝑢 𝑥 at a higher “sampling frequency” 2𝜋/𝑎.

With such “sampling”, “single-frequency signals” with “frequencies” k and

𝑘 ൅ 𝑙௄
2𝜋
𝑎 ൌ 𝑘 ൅ 𝐾

are not distinguishable.



𝑘 ൌ
2𝜋
𝐿 𝑛௫

We define all k in one 2𝜋/𝑎-long zone : െ𝜋/𝑎 to 𝜋/𝑎, the first Brillouin zone. 

“Sampled” at “sampling frequency” 2𝜋/𝑎, 
“single-frequency signals” with “frequencies” k and

𝑘 ൅ 𝑙௄
2𝜋
𝑎 ൌ 𝑘 ൅ 𝐾

are not distinguishable.

“Aliasing” in signals and systems.

Frequency f

Frequency f + fs; 
fs is sampling rate.

0 2𝜋
𝑎

2
2𝜋
𝑎െ

2𝜋
𝑎െ2

2𝜋
𝑎

k

q

Black: 𝑈 𝑞 Red: a set of 𝛹 𝑞 for a particular k

𝑛௫ ൌ 0,േ1,േ2, … ,േ
𝑁
2

N is # of unit cells, 
not # of electrons.



0 2𝜋
𝑎

2
2𝜋
𝑎െ

2𝜋
𝑎െ2

2𝜋
𝑎

k

q

Black: 𝑈 𝑞 Red: a set of 𝛹 𝑞 for a particular k

The “single-frequency signal” 𝑒௜௞௫ in the 1st Brillouin zone and those 𝑒௜௤௫ in higher 
Brillouin zones, where

𝑞 ൌ 𝑘 ൅ 𝑙௄
2𝜋
𝑎 ൌ 𝑘 ൅ 𝐾

are not distinguishable.

Therefore, 𝛹 𝑞 𝑒௜௤௫ can be “aliased” into the 1st Brillouin zone by shifting

k

െ𝐾 ൌ െ𝑙௄
2𝜋
𝑎Thus, for a particular k,

𝜓௞ 𝑥 ≡ 𝜓 𝑥 ൌ෍𝛹 𝑞
௤

𝑒௜௤௫ ൌ෍𝑈 𝑞 െ 𝑘
௤

𝑒௜ ௄ା௞ ௫ ൌ 𝑒௜௞௫෍𝑈 𝐾
௄

𝑒௜௄௫

∵  ෍𝑈 𝐾
௄

𝑒௜௄௫ ൌ 𝑢ሺ𝑥ሻ ∴   𝜓௞ 𝑥 ൌ 𝑢ሺ𝑥ሻ𝑒௜௞௫

Keep in mind that 𝑢 𝑥 is a periodic function: 𝑢 𝑥 ൅ 𝑎 ൌ 𝑢 𝑥



1st Brillouin zone

First, we consider 𝑉ሺ𝑥ሻ ൎ 0 but periodic.

𝑉ሺ𝑥ሻ ൎ 0  𝐸 ൌ ℏଶ𝑘ଶ/2𝑚
Considering “aliasing” due to periodicity, 
shift segments of E(k) curve into 1st BZ 

Yu & Cardona, Section 2.2, p. 21.



Grundmann, The Physics of Semiconductors

1st Brillouin zone

Now, we consider weak periodic 𝑉ሺ𝑥ሻ ൌ෍𝑉෨ሺ𝑙௫
2𝜋
𝑎 ሻ

௟ೣ

𝑒௜௟ೣ
ଶగ
௔ ௫ ≡෍𝑉෨ሺ𝐾ሻ

௄

𝑒௜௄௫

Small period a, large fundamental spatial frequency 2𝜋/𝑎. 
Solve Schrödinger equation for each k

𝐸
𝐾
2 ൎ 𝐸ሺ଴ሻ

𝐾
2 േ 𝑉෨ሺ𝐾ሻ𝐸 𝑘 ൎ 𝐸ሺ଴ሻ 𝑘 away from 𝑘 ൎ 𝐾/2,

|𝑉෨
2𝜋
𝑎 |

|𝑉෨ 2
2𝜋
𝑎 |

|𝑉෨ 3
2𝜋
𝑎 |



Grundmann, The Physics of Semiconductors

1st Brillouin zone

|𝑉෨
2𝜋
𝑎 |

|𝑉෨ 2
2𝜋
𝑎 |

|𝑉෨ 3
2𝜋
𝑎 |

Band gaps

We just discovered energy bands!

redundant

N distinct k values in 1st BZ
Assuming one atom in each unit cell (size a), we have N single-electron states each band.

If the element is valence 1, only half of the states of the lowest band are occupied.
If the element is valence 2, the lowest band is filled.



For each band, the two states at the 2 edges of the 1st BZ, 
𝑘 ൌ െ𝜋/𝑎 and 𝑘 ൌ 𝜋/𝑎, are the same state.

In electric field ℰ, ℏΔ𝑘 ൌ 𝑞ℰ𝜏, and 𝑚𝑣ௗ ൌ ℏΔ𝑘 for a partially filled band.

A fully occupied band does not conduct.

Assuming one atom in each unit cell, we have 
N single-electron states each band.

If the element is valence 1, only half of the states of 
the lowest band are occupied.

If the element is valence 2, the lowest band is filled.

For our 1D examples:

 conductor

 Insulator/semiconductor

What about valence 3 and 4?

The band states are eigenstates of the Hamiltonian (energy). 



 conduction electrons, holes to be discussed later

Half filled  metal. 
Electron occupancy of band states at ambient temperatures 
not too different from that at T = 0. 

k k

Equilibrium

In electric field ℰ

In electric field ℰ, ℏΔ𝑘 ൌ 𝑞ℰ𝜏, and 𝑚𝑣ௗ ൌ ℏΔ𝑘.

Assuming energy-independent 𝜏, each electron 
is shifted by Δ𝑘.
Therefore, 𝑚𝑣ௗ ൌ ℏΔ𝑘.

Half-filled band

Fully filled  insulator/semiconductor. 
No conduction at T = 0. 
At T > 0, thermal excitation 
A few vacancies in the previously empty band, and 
same # of electrons in the band immediately above. 
Electron occupancy of band states sensitive to T.



Bloch’s Theorem
(Notice it’s a theorem, not a law.  Mathematically derived)

The eigenstates (r) of the one-electron Hamiltonian

where V(r + R) = V(r) for all R in a Bravais lattice can be chosen to have the form 
of a plane wave times a function with the periodicity of the Bravais lattice:

)()( ,, rr k
rk

k n
i

n ue 

where un,k(r + R) = un,k(r).
Equivalently,

)()( ,, rRr k
Rk

k n
i

n e  

)(
2

ˆ 2
2

rV
m

H 


A periodic function u(r) is a 
solution to the Schrödinger Eq
(with k = 0), but the Bloch 
function is general.

ħ including contributions from all other e’s

lattice vectors

 𝜓௞ 𝑥 ൌ 𝑢ሺ𝑥ሻ𝑒௜௞௫ 𝑢 𝑥 is a periodic: 𝑢 𝑥 ൅ 𝑎 ൌ 𝑢 𝑥

Extended to 3D, this is the Bloch’s Theorem:

To be explained

Here, n is the band index. 



We understood Bloch’s theorem in 1D space by using time-domain signal analogy.
We need to better understand 3D periodicity. 

* =
𝑢 𝑡 ∗ 𝛿 𝑡 ൌ 𝑢ሺ𝑡ሻ
Convolution in time (or 1D space)

Fourier transform

 =

𝑈ሺ𝜔ሻ
Multiplication in 
frequency (or k) domain

……
*

𝑢 𝑡

……

=

=

Fourier transform
𝑈ሺ𝜔ሻ



……
*

𝑢 𝑡

……

=

=

Fourier transform
𝑈ሺ𝜔ሻ

For whatever we are to study, the  impulse comb captures the periodicity.

We now examine the periodicity, which can be applied to whatever we are to study.



Fourier transform

0 = 2/T

0

Time-domain 
signal

Spectrum

DC

Fundamental frequency 2nd harmonic

Infinitely long impulse comb



The math is the same for space (as for time)

x

a

Fourier transform
2/a

0 k

or 1/a

0 Spatial frequency



You may replace the spikes with points

aIn real space:

We call a period a “unit cell.”  Infinite choices for the unit cell.

In reciprocal (or k-) space:

Fourier transform

2/a
k

0



tT

Just like you can have a pulse train in time domain

the unit cell can have an internal structure

Again, you have infinite choices defining the unit cell,
but the periodicity remains the same for all choices.

Fourier transform

2/a
k

0

(A computer can do FFT)

0 spot

1 spot1 spot

The intensities of the spots vary due to the unit cell internal structure, 
just like in the spectrum of a time-domain pulse train:

Time domain

Spectrum





Nature’s way of doing Fourier transform: Diffraction

Shine a beam (X-ray) with many 
wavelengths (broadband)

To have constructive interference between reflections by all atoms/unit cells:

na
2



n
a

k
22

 
a

nk
2
2



The k (vector, proportional to its momentum) of the photon is changed upon reflection by
The k of the photon

a
n

a
nif

 2
2
22 






 kkk

2/a
k

0
You see, the Fourier transform is just a “spectrum” of k.

It feels like the lattice gives the photons momenta n(2/a). 
You have a kind of “momentum conservation.”

a



Fourier transform in 2D

a

b
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2/b
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Real

Reciprocal
a

b



a

a
2
3

aa 3
4

2
3

2 


(00)

Real Reciprocal

The periodic structure with out an internal structure of the unit cell is the Bravais lattice. 



a

The periodic structure without an internal structure of the unit cell is the Bravais lattice. 

Infinite choices defining the unit cell.
Periodicity remains the same for all choices.

a

b



Infinite choices to define the unit cell. 
Periodicity remains the same for all choices.



Is the graphene “lattice” a (Bravais) lattice?

zigzag

arm
chair



Wait a minute, is the graphene “lattice” a lattice?
zigzag

arm
chair



Wait a minute, is the graphene “lattice” a lattice?
zigzag

arm
chair



Real

Reciprocal

zigzag

arm
chair

Crystal structure = lattice + basis

2 atoms per unit cell



Simple cubic

The simplest 3D Bravais lattice

How many lattice points per unit cell? 

Question

Is the NaCl structure a simple cubic lattice?

𝐚ଵ, 𝐚ଶ, 𝐚ଷ, are primitive vectors

In a 3D Bravais lattice, each lattice point is 
represented by a position vector

𝐑 ൌ 𝑛ଵ𝐚ଵ ൅ 𝑛ଶ𝐚ଶ ൅ 𝑛ଷ𝐚ଷ

https://chemistry.stackexchange.com/questions/34119/number-of-atoms-in-nacl-unit-cell



Other frequently seen lattices

BCC (body-centered cubic)

FCC (face-centered cubic)

Conventional vs. primitive unit cells

How many lattice points in the conventional unit cells?

BCC & FCC are Bravais Lattices. 𝐑 ൌ 𝑛ଵ𝐚ଵ ൅ 𝑛ଶ𝐚ଶ ൅ 𝑛ଷ𝐚ଷ



http://www.ilpi.com/inorganic/structures/cscl/index.html

CsCl structure

What’s the underlying Bravais lattice of the 
NaCl structure?
How many atoms per primitive unit cell?
How many atoms per conventional unit cell?

https://chemistry.stackexchange.com/questions/34119/number-of-atoms-in-nacl-unit-cell

NaCl structure

Is the CsCl structure a BCC lattice?



Homework 4 problems:

The lattice parameter of a BCC lattice is a is 
the edge length of the conventional unit cell. 
What is the volume of the primitive unit cell? 
What is the volume per lattice point?

The lattice parameter of an FCC lattice is a is 
the edge length of the conventional unit cell. 
What is the volume of the primitive unit cell? 
What is the volume per lattice point?



Reciprocal lattice and first Brillouin zone 

a
Real space lattice

Reciprocal lattice

Fourier transform

2/a
k

0 𝜋/𝑎

1st BZ

െ𝜋/𝑎

1D



(00) 2/a

2/b

22 ba
ab


ab
ba 222 

Real

Reciprocal

a

b

Construct the 1st BZ: 
Connect point (00) to 
nearest neighbors.
Draw bisectors. 
Area enclosed by all 
bisectors is the 1st BZ. 

2D



Real space Reciprocal space



K

M

Names are given to 
high-symmetry points



3D: BCC & FCC are reciprocal lattices of each other

4
4

4

4 4

4

Why not 2/a?
(a Homework 4 problem)



Homework 4 problems:

What is the reciprocal lattice of a simple cubic lattice of lattice parameter a?

Given the fact that BCC & FCC are reciprocal lattices of each other 
(no need to prove it), show that the edge lengths of the FCC & BCC 
unit cells of the reciprocal lattices are 4/a.



The reciprocal lattice of FCC is BCC.

4 4

4

4/a

Why is FCC so important?

 X = ??? 
 L = ???

(HW4 problems)

First BZ



Why is FCC so important?

It’s the underlying Bravais lattice of mainstream semiconductors (Si and many III-V).

Si: diamond, a = 5.4 Å.  GaAs: zincblende

Crystal structure = lattice + basis (unit cell)

https://fr.m.wikipedia.org/wiki/Fichier:Silicon-unit-cell-3D-balls.png
https://en.wikipedia.org/wiki/Cubic_crystal_system#Zincblende_structure



Zagorac, PHYSICAL REVIEW B 89, 075201 (2014)

Zincblende: show the pyramid cages 



NaCl structure: show the octahedral cages 



Crystallographic direction index

The related notation [hkℓ] denotes the direction ℎ𝐚ଵ ൅ 𝑘𝐚ଶ ൅ 𝑙𝐚ଷ

Indices in angle brackets such as ⟨100⟩ denote a family of directions that 
are equivalent due to symmetry operations, such as [100], [010], [001]. 

Cubic systems

https://en.wikipedia.org/wiki/Miller_index

Negative signs

O x
y

z



(hkℓ) denotes planes orthogonal to the reciprocal lattice vector three Miller indices h, k, ℓ

Miller indices for crystallographic planes 

𝐊 ൌ ℎ𝐛ଵ ൅ 𝑘𝐛ଶ ൅ 𝑙𝐛ଷ

https://en.wikipedia.org/wiki/Miller_index

Equivalently, (hkℓ) denotes 
a plane that intercepts the 
three points a1/h, a2/k, and 
a3/ℓ, or some multiple 
thereof. 

This is an easier way to get the indices:
Reciprocals of the intercepts in real 
space;
No need to find the reciprocal 
primitive vectors.

If one of the indices is zero, it means that the planes do not intersect that axis 
(the intercept is "at infinity").

Different conventions in naming the real and reciprocal primitive vectors
Real: a1, a2, a3; reciprocal b1, b2, b3
Real: a, b, c; reciprocal 𝐚∗, 𝐛∗, 𝐜∗



(00) 2/a

2/b
22 ba

ab


ab
ba 222 

Real

Reciprocal
a

b

An easier way to get the indices:
Reciprocals of the intercepts in real 
space.

More easily visualized in 2D.

(11) “planes” – actually lines in 2D

(11) Line intercept a and b 
axis at 1 and 1.

(11) line  (𝐚∗ ൅ 𝐛∗)
real reciprocal

𝐚∗

𝐛∗

Distance between 
neighboring lines

𝑑 ൌ
2𝜋

𝐚∗ ൅ 𝐛∗

Convention used:

Real: a, b; reciprocal 𝐚∗, 𝐛∗



x

y

z

(100)

(200)

Easier way to get the indices:
Reciprocals of the intercepts

{001}

Cubic systems
Indices in curly brackets or braces such as {100} denote a family of planes that are 
equivalent due to symmetry operations.

{110}

{111}



Crystallographic direction and plane indices are usually defined with regard to 
conventional unit cells, due to their high symmetry.

https://fr.m.wikipedia.org/wiki/Fichier:Silicon-unit-cell-3D-balls.png https://en.wikipedia.org/wiki/Cubic_crystal_system#Zincblende_structure

CMOS technology uses the (100) surface of Si.

Homework 4 problems:
Schematically illustrate the 1D atomic lines in the ⟨100⟩ direction of Si (diamond structure). 
Specify distances between neighboring atoms. Define the 1D periodic structures of these 
lines by defining a unit cell and a Bravais lattice for each (if different). Are all these atomic 
lines equivalent to each other? Repeat for ⟨110⟩ and ⟨111⟩.

Repeat the above for GaAs (zincblende structure).



Homework 4 problems:
Schematically illustrate the 2D atomic planes parallel to {100} planes of Si. 
Specify distances between neighboring atoms. Define the 2D periodic structures 
of these atomic planes by defining a unit cell and a Bravais lattice for each (if 
different).  Are all the line equivalent to each other? 
Repeat for {110} and {111}.

Repeat the above for GaAs.



Bravais Lattices
A mathematical concept that captures (only) the periodicity of crystal structures:  

• No boundaries or surfaces 
• No real (physical) thing – just points, hence no defects
• No motion

Primitive unit cells are the smallest unit that repeats itself.

What do you mean by “infinitely large”?

A big cube is made of 10 X 10 X 10 small cubes.  How many of them 
are on the faces?

Crystallography highlights 



33 = 27
(32)3 = 1

103 = 1000
(102)3 = 512

Half of the small cubes are on surfaces!

A big cube is made of 10 X 10 X 10 small cubes.  How many of them 
are on the faces?

Surfaces are usually different in structure from crystallographic planes – reconstruction.



U

W



Labels are group theory jargons





From Ziman, Principles of the Theory of Solids

Premitive cell

Behind depicted primitive cell

(1,-1,0) plane

A look at the bond picture



From Ziman, Principles of the Theory of Solids
[1,1,‐1]

[111]



From Ziman, Principles of the Theory of Solids

[111]

Christensen, Phys. Rev. B 36,1032 (1987)

Electron probability density concentrates between neighboring Si atoms, 
as expected from sp3 bonding. 



Electron probability density concentrates between 
neighboring Si atoms, as expected from sp3 bonding. 
For zincblende, higher density towards the anion 
(group V atom in III-V). 

The bond orbitals form a 3D network.



3s

3p

Marzari, Rev. Mod. Phys. 84,1419 (2012)

Wave function (not electron density as shown in previous slides) 
corresponding to the sp3- bond. 

Si

Bands have atomic orbital characters.



3s

3p

Marzari, Rev. Mod. Phys. 84,1419 (2012)

Si GaAs



The band and bond pictures of solids

A band state (identified by a wavevector k and an energy E) is an extended eigenstate 
of the Hamiltonian of the crystal. 

A bond orbital is a localized state corresponding to a chemical bond. 

The two pictures are different perspectives of the same electrons of a crystal. 
The band states and the bond orbitals are two different basis sets. 

Chemical bonds are not strictly defined, but a set of localized orbitals can be found 
that are orthogonal and complete to serve as a basis set. 

These localized bond orbitals are not eigenstates of the Hamiltonian, 
thus does not have definitive energies. 

The band picture is more useful when studying the macroscopic properties 
of a semiconductor, e.g., light absorption and emission, electrical transport

The bond picture is more useful when we think about the chemistry and atomic-scale 
structure: surfaces and interfaces, epitaxial growth, defects 



Closing Remarks & Recommended Reading

By now we have laid down the cornerstones for the understanding of semiconductors: 
Quantum mechanics and Solid state physics. 

These are vast fields of physics on their own. We have to pick a limited subset of 
topics to cover in this course.  So do any instructors and textbooks of a similar course. 

Therefore, textbooks on semiconductor fundamentals 
are often very dense, not easy reads.
Now you have learned enough to start reading some of these books.

Recommended reading
Peter Y. Yu & Manuel Cardona, Fundamentals of Semiconductors: 
Physics and Materials Properties, 4th Edition.  
Available as e-book and paper book at UT Library.
Ch. 2, p. 17-18
2.1 Quantum Mechanics, p. 18-20
2.2 Translational Symmetry and Brillouin Zones, p. 20-25
2.3 A Pedestrian’s Guide to Group Theory: not covered in this course; 

skim through to get a few buzz words. 
2.4 Empty Lattice or Nearly Free Electron Energy Bands, p. 48-58: I 
covered the topic with a different approach. Since we skipped group 
theory, you won’t understand everything.



Recommended reading
Peter Y. Yu & Manuel Cardona, Fundamentals of Semiconductors: 
Physics and Materials Properties, 4th Edition.  
Available as e-book and paper book at UT Library.
Ch. 2, p. 17-18
2.1 Quantum Mechanics, p. 18-20
2.2 Translational Symmetry and Brillouin Zones, p. 20-25
2.3 A Pedestrian’s Guide to Group Theory: not covered in this course; 

skim through to get a few buzz words. 
2.4 Empty Lattice or Nearly Free Electron Energy Bands, p. 48-58: I 

covered the topic with a different approach. Since we skipped group 
theory, you won’t understand everything.

2.5 Band Structure Calculations by Pseudopotential Methods: Read p. 
58-59. It’s okay if you don’t understand everything. 

2.7 Tight-Binding or LCAO Approach to the Band Structure of 
Semiconductors, p. 83-96: I talked about the bond and band pictures 
from a different perspective. Try to understand this section as much 
as you can.


