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A theory of edge detection is presented. The analysis proceeds in two
parts. (1) Intensity changes, which occur in a natural image over a wide
range of scales, are detected separately at different scales. An appropriate
filter for this purpose at a given scale is found to be the second derivative
of a Gaussian, and it is shown that, provided some simple conditions are
satisfied, these primary filters need not be orientation-dependent. Thus,
intensity ch iyen scale are best detected by finding the zero
values of-‘;ViG(x, y)* I(z, bﬁ) for image I, where G(z, y) is a two-dimen-
sional Gaussi stribution and V2 is the Laplacian. The intensity
changes thus discovered in each of the channels are then represented by
oriented primitives called zero-crossing segments, and evidence is given
that this representation is complete. (2) Intensity changes in images arise
from surface discontinuities or from reflectance or illumination bound-
aries, and these all have the property that they are spatially localized.
Because of this, the zero-crossing segments from the different channels
are not independent, and rules are deduced for combining them into a
description of the image. This description is called the raw primal sketch.
The theory explains several basic psychophysical findings, and the opera-
tion of forming oriented zero-crossing segments from the output of
centre—surround V2@ filters acting on the image forms the basis for a
physiological model of simple cells (see Marr & Ullman 1g7g).

"INTRODUCTION

The experiments of Hubel & Wiesel (1962) and of Campbell & Robson (1968)
introduced two rather distinct notions of the function of early information pro-
cessing in higher visual systems. Hubel & Wiesel’s description of simple cells as
linear with bar- or edge-shaped receptive fields led to a view of the cortex as
containing a population of feature detectors (Barlow 1969, p. 881) tuned to
edges and bars of various widths and orientations. Campbell & Robson’s ex-
periments, showing that visual information is processed in parallel by a number
of independent orientation and spatial-frequency-tuned channels, suggested a
rather different view, which, in its extreme form, would describe the visual
cortex as a kind of spatial Fourier analyser (Pollen et al. 1971 ; Maffei & Fiorentini

1977)-




188 D. Marr and E. Hildreth

The raw primal sketch 189

analysis within each channel, and the second, with combining information from
different channels. Each computational section discusses algorithms for imple-
menting the theory, and gives examples.

The second half of the article examines the implications for biology. The
wormﬁoﬁ of the algorithms is shown to account for a range of basic psychophy-
cal findings, and a specific neural implementation is presented. Our model is not
tended as a complete proposal for a physiological mechanism, because it ignores
{ the attribute of directional selectivity that so pervades cortical simple cells. The
model does, however, make explicit certain nonlinear features that we regard as
tical, and it forms the starting point for the more complete proposal of Marr &
Ullman (1979), which incorporates directional selectivity.

Protagonists of each of these views are able to make substantial criticisms
the other. The main points against a Fourier interpretation are: (1) The bandwidt|
of the channels is not narrow (1.6 octaves, Wilson & Bergen 1979). The corrés
ponding receptive fields have a definite spatial localization. (2) As Campbell ¢
Robson found, early visual information processing is not linear (e.g. probabilit;
summation (Graham 1977; Wilson & Giese 1977), and . failure of m:mmGomm.ao
(Maffei & Fiorentini 1972 a)). (3) Only rudimentary phase information is apparentl;
encoded (Atkinson & Campbell 1974).

The main point against the linear feature-detector idea is that if a simple ¢
truly signals either the positive or the negative part of the linear convolutio
its bar-shaped receptive field with the image intensity, it can hardly be though
of as making some symbolic assertion about the presence of a bar in the imag
(Marr 19764, p. 648). Such a cell would necessarily respond to many stimuli othe
than a bar, more vigorously, for example, to a bright edge than to a dim bar, an
thus would not be specific enough in its response to warrant being called a featur
detector.

Perhaps the greatest difficulty faced by both camps is that neither approac
can give direct information about the goals of the early analysis of an image. Thi
motivated a new approach to vision, which enquired directly about the inform:
tion processing problems inherent in the task of vision itself (Marr 19764, b; anc
see Marr 1978 for the overall scheme). According to this scheme, the purpose
early visual processing is to construct a primitive but rich description of the imag
that is to be used to determine the reflectance and illumination of the visibl
surfaces, and their orientation and distance relative to the viewer. The firg
primitive description of the image was called the primal sketch (Marr 1976b) ant
it is formed in two parts. First, a description is constructed of the intensity change
in an image, using a primitive language of edge-segments, bars, blobs and termina:
tions. This description was called the raw primal sketch (Marr 19765, p. 497)
Secondly, geometrical relations are made explicit (using virtual lines), and larger
more abstract tokens are constructed by selecting, grouping and summarizing
the raw primitives in various ways. The resulting hierarchy of descriptions cove
a range of scales, and is called the full primal sketch of an image. :

Although the primal sketch was inspired by findings about mammalian vis
systems, we were until recently unable to make it the basis of a detailed the

of human early vision. Three developments have made this possible now: (a) t
emergence of quantitative information about the channels present in early human
vision (Cowan 1977; Graham 1977; Wilson & Giese 1977; Wilson & Bergen 197
(b) Marr & Poggio’s (1979) theory of human vision (especially the framewor
within which it was written); and (c) the related obsetvations of Marr et al. ?8@
about the relevance of a result like Logan’s (1977) theorem to early vision.

These advances have made possible the formulation of a satisfactory comput
tional theory. This article deals with the first part, the derivation of the ra
primal sketch. The theory itself is given in two sections, the first dealing with

‘UMH.HOH.HZQ AND REPRESENTING INTENSITY CHANGES IN AN IMAGE

A major difficulty with natural images is that changes can and do occur over a
wide range of scales (Marr 19764, b). No single filter can be optimal simulta-
eously at all scales, so it follows that one should seek a way of %&Em separately
th the changes occurring at different scales. This 3@535¢5¢W ogether with
he findings of Campbell & Robson (1968), leads to the basic idea; illustrated in
figure 1, in which one first takes local averages of the image at various resolutions
nd then detects the changes in intensity that occur at each one. To realize this
dea, we need to determine (@) the nature of the optimal smoothing filter, and (b)
ow to detect intensity changes at a given scale.

The optimal smoothing filter

There are two physical considerations that combine to determine the appro-
ate smoothing filter. The first is that the motivation for filtering the image is
o reduce the range of scales over which intensity changes take place. The filter’s
ctrum should therefore be smooth and roughly band-limited in the frequency
omain. We may express this condition by requiring that its variance there, Aw,
hould be small. .

. The second consideration is best expressed as a constraint in the spatial domain,
nd we call it the constraint of spatial localization. The things in the world that
ve rise to intensity changes in the image are: (1) illumination changes, which
clude shadows, visible light sources and illumination gradients; (2) changes in
e orientation or distance from the viewer of the visible surfaces; and (3) changes
i surface reflectance. The critical observation here is that, at their own scale,

smmo things can all be thought of as spatially localized. Apart from the occasional
raction pattern, the visual world is not constructed of ripply, wave-like primi-
ves that extend and add together over an area (c.f. Marr 1970, p. 169), but of
ontours, creases, scratches, marks, shadows and shading.

"The consequence for us of this constraint is that the contributions to each
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{a) ;

n the filtered image should arise from a smooth average of nearby points,
er than any kind of average of widely scattered points. Hence the filter that
ek should also be smooth and localized in the spatial domain, and in particular

tial variance, Az, should also be small.

uRE 2. The operators G” (equation 5) and V2G': (a) shows (7, the second derivative of the
one-dimensional Gaussian distribution; (¢) shows V2@, its rotationally symmetric two-
dimensional counterpart; (b) and (d) exhibit their Fourier transforms.

Unfortunately, these two localization requirements, the one in the spatial and
, other in the frequency domain, are conflicting. They are, in fact, related by
¢ uncertainty principle, which states that Az Aw > }= (see, for example,

Ficure 1. A _oc&.m.éogmm filtered image. In the original image (a), intensity ormwmm,m ca
Place over a wide range of mcm._mm and no single operator will be very efficient at dete
all of them. The problem is much simplified in a Gaussian band-limited filtered

M wMemMmﬁcwMme mewa mmwww%mmw %w%ﬁ%ﬂm“ﬁ decomposing the original imag tacewell 1965, pp. 160-163). There is, moreover, only one distribution that

wpor., In (5) the image is filbered with a Gaussian m@ﬁwm_ﬁ %o Mm_m%wwwﬁﬂmmwﬂwwwwm”g imizes this relation (Leipnik 1g60), namely the Gaussian

in (c), o = 4. The image is 320 x 320 picture elements. Ga) = T\QAM?E exp AI&.»\MQ.»Y with Fourier transform (1)
; (2

G(w) = exp (— 302 0?).

two dimensions, G(r) ={ (4no?) &xp (—r2/20%).

(9

d

)
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{z) looks like a Mexican hat operator (see figure 2), it closely resembles Wilson
v Giese’s (19777) difference of two Gaussians (Do), and it is, in fact, the limit of
e poa function as the sizes of the two Gaussians tend to one another (see figure 11
d appendix B). It is an approximately bandpass operator, with a half-power
dwidth of about 1.2 octaves, and so it can be thought of as looking at the
rmation contained in one particular part of the spectrum of the image.

These arguments establish that intensity changes at one scale may, in principle,
letected by convolving the image with the operator D*G and looking for
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Hrmm_gaQersmwaoimmmgmowaaﬁﬁpmo-om._uoﬁimmdoE. codmmcadmaaﬁ
ments. ,

Detecting intensity changes

Wherever an intensity change occurs, there will be a, corresponding peak i
first directional derivative, or equivalently, a zero-crossing in the second

tional derivative of intensity (Marr 1976b; Marr & Poggio 1979). In fact, we

define an intensity change in this way, so that the task of detecting these cha;

o-crossings in its output. Only one issde is still unresolved, and it concerns the
ation assoctated-with-D? It is not enough to choose zero-crossings of the
ond derivative in any direction. To understand this, imagine a uniform intensity
inge running down the y-axis, as shown in figure 3. At the origin, the second
sctional derivative is zero in every direction, but it is non-zero nearby in every
‘oction except along the y-axis,

hich direction should the derivative be taken?

To choose which directional derivative to use, we observe that the underlying

tivation for detecting changes in intensity is that they will correspond to

ful properties of the physical world, like changes in reflectance, illumination, ,
face orientation, or distance from the viewer. Such properties are spatially

ntinuous and can almost everywhere be associated with a direction that projects

an orientation in the image. The orientation of the directional derivative that

- choose to use is therefore that which coincides with the orientation formed

ocally by its zero-crossings. In figure 3, this orientation is the y-axis, and so the

rectional derivative we would choose there is 021 /022, ‘
Under what conditions does this direction coincide with that in which the zero-

ssing has maximum slope? The answer to this is given by theorem 1 (see

ppendix A), and we call it the condition of linear variation:

he intensity variation near and parallel to the line of zero-crossings should

ocally be linear.

is condition will be approximately true in smoothed images, and in the rest
this article we shall assume that the condition of linear variation holds.

F1eure 3. Spatial and directional factors interact in the definition of a Zero-crossing segm
Aav;mro«wm an intensity change, and (b), (c) and (d) show values of the second directi
m@aiseio near the origin at various orientations across the change. In (b), the derivati
is taken parallel to the »-axis, and in (¢} and (d), at 30° and 60° to it. There is a
E.Ommwdm at every orientation except for 821 /dy?, which is identically zero. Since the 76}
crossings line up along the y-axis, this is the direction that is chosen. In this exampl
is also the direction that maximizes the slope of the second derivative. ;

can be reduced to that of finding the zero-crossings of the second derivative D
intensity, in the appropriate direction. That is to say, we seek the zero-crossi

m "his direction can be found by means of the Laplacian

here are three main steps in the detection of zero-crossings. They are: (1) a
onvolution with D2@, where D? stands for a second directional derivative opera-
(2) the localization of zero-crossings; and (8) checking of the alignment and
rientation of a local segment of zero-crossings. Although it is possible to imple-
ent this scheme directly (Marr 19765, p. 494), one immediate question that can
“asked is, are directional derivatives of critical importance here? Convolutions
¢ relatively expensive, and it would much lessen the computational burden if
Vol. 207, B

f(@ y) = D[G(r)+I(x, y)],

where I(z, y) is the image, and * is the convolution operator. ww the derivat
rule for convolutions,

f@,y) = D*G x Iia, ).

We can write the operator D?@ as G”, and in one dimension

G"(x) = [—1/0%2n)¥] (1 -22/0?) exp (—2?/202).

7
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) A zero-crossing segment in a Gaussian filtered image consists of a linear
gment ! of zero-crossings in the second directional derivative operator whose
Hitection lies perpendicular to I.
2) We can also define an amplitude v associated with a zero-crossing segment, as
slope of the directional derivative taken perpendicular to the segment. To
why this is an appropriate measure, observe that a narrow bandpass channel
r a zero-crossing at the origin can be described approximately by v sin wz,
ich has slope vw at the origin. Hence, if s is the measured slope of the zero-
ing, » = s/w. The factor 1/w is a space constant, and scales linearly with the
ipling interval required.
he set of zero-crossing segments together with their amplitudes, constitutes a
mitive symbolic representation of the changes taking place within one region
he spectrum of an image. Full coverage of the spectrum can now be had simply
applying the analysis over a sufficient number of channels simultaneously.
Finally, there are grounds for believing that this representation of the image is
mplete. Marr ef al. (1979) noted that Logan’s (1977) recent theorem, about the
Jhro-crossings of one-octave bandpass signals, shows that the set of such zero-
b sing segments is extremely rich in information. If the filters had bandwidth
tan octave or less, they would in fact contain complete information about the
ered image. In practice, the V2@ filter has a half-sensitivity bandwidth of
out 1.75 octaves, which puts it outside the range in which Logan’s theorem
ies. On the other hand, if we add information about the slopes of the zero-
ssings, the situation may be more congenial. In the standard sampling theorem,
the first derivative, as well as the value, is given, the sampling density can be
ved (see, for example, Bracewell 1978, pp. 198-200). Tt seems likely than an
logous extension holds for Logan’s (1977) theorem. If this were true, the zero-
sing segments, whose underlying motivation is physical, would in fact provide
ficient basis for the recovery of arbitrary intensity profiles.
‘summary, then, we have shown how intensity changes at one scale may be
cted by means of the V2@ operator and that they may be represented,
ably completely, by oriented zero-crossing segments and their amplitudes.
etect changes at all scales, it is necessary only to add other channels, like the
described above, and to carry out the same computation in each. These
Brdsentations are precursors of the descriptive primitives in the raw primal
ttch, and mark the transition from the ‘analytic’ to the ‘symbolic’ analysis of
mage. The remaining step is to combine the zero-crossings from the different
els into primitive ‘edge’ elements, and this task is addressed later in the
e.

their number could be reduced, for example, by using just one orient
independent operator. :
The only orientation-independent second-order differential operator
Hpﬂ?&@d V2, and theorem 2 (see appendix A) makes explicit the conditions
which it can be used. They are weaker than the condition of linear variation; whi
we met in theorem 1, and they state that provided the intensity variatio
(G  I) is linear along but not necessarily near to a line of zero-crossings, then
Nono-oawmmmdmm_ will be detected and accurately located by the zero values o
.H&%FE@P Again, because in our application the condition of linear varia
is wwwaoxmapﬁm_% satisfied, so will be this condition. It follows that the det i
of intensity changes can be based on the filter V2@, illustrated in figure 2.5
_however, worth remembering that in principle,-if-intensity-varies-along a seg:

T e, e et 08

in a very non-linear way, the Laplacian, and hence the operator V2@ will s
zero-crossing displaced: to-one.side : i

Summary of the argument )

The main steps in the argument so far are, therefore, these.
. (1) To limit the rate at which intensities can change, we first convolve th
image I with a two-dimensional Gaussian operator Q.

(2) Intensity changes in G I are then characterized by the zero-crossin
the second directional derivative D2(@ % I). This operator is roughly ban
and so it examines only a portion of the spectrum of the image.

(3) The orientation of the directional derivative should be chosen to coin
with the local orientation of the underlying line of ZeT0-crossings. 3

(4) Provided that the condition of linear variation holds, this orientation is
the one at which the zero-crossing has maximum slope (measured perpendicil
to the orientation of the zero-crossing). r
. (5) By theorem 1 of appendix A, if the condition of linear variation hold
rd.mm o.m zero-crossings defined by (8) are precisely the zero-crossings of the ofi
ation-independent differential operator, the Laplacian V2. ‘

Amw The loci of zero-crossings defined by (3) may therefore be detecte
nomically in the image at each given scale by searching for the zero values 6

convolution V2@ % I. In two dimensions,
ViQ(r) & — 1/moN1—1r%/20%] exp (—r2/20%).

. ; r - . .
(( e G—HH n Now RC R—HO uestion- o ow ﬂ T ®@H®m®~H ~H® Hbﬁ@uﬂmwﬁ Q:mhwm@m

Representing the intensity changes

. H.d a vmbm-mub?m& image, changes take place smoothly, so it is always possi
dividea line of zero-crossingsintosmall segments, each of which approximately
the ooz&d%d of linear variation. Thisfact allows us to make thefollowing defin ;

Examples and commenis

igure 4 shows some examples of zero-crossings. The top row shows images and

second shows their convolutions with the operator V2@, exhibited in figure 2.

Ueto is represented here by an intermediate grey, so that very positive values
. va



FiGcure 4. Examples of zero-crossing detection by means of V2G. Row (a) shows three images
and row (b) shows their convolutions with the V2@ filter of figure 2 (w = 20 = 8), zero
being represented by an intermediate grey. In row (¢), positive values are shown white,
and negative, black; and in row (d) only the zero-crossings appear.
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fa) (5)

() (d)

i 2@ is compared with a square-wave
i ther image, except that rono.. A% ! >
m.dm.—%mum MMmM”og the mmomua derivative. The widths .om the central oxo_nmaoqgnwmﬂ”m Aww.
MMHVMMM““ are the same for each comparison pair, being 12 mh.:. (a) and (b), an
QSM (d). The square-wave filter sees relatively few zero-crossings.

Fioure 5. Comparison of the performance of V2@ with that of similar filters, Column (a);
shows an image, its convolution with V@ and the resulting si
Column (b) contains the same sequence,
shown, with its Fourier transform, at the

top of the column. The Zero-crossing arrs
contains echoes of the strong edges in the

image. Columns (¢) and (d) exhibit the sam
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appear white, and very negative ones, black. Ir: the third row, all positive valu
appear completely white, and all negative ones are black, and the fourth row
shows just the loci of zero values. It will be observed that these delineate well the
visible edges in the images. (See the legend for more details.) It remains only to
break the zero value loci into oriented line segments.

It is interesting to compare the zero-crossings found by means of V2@ with tho
found by means of similar operators that, according to our arguments, are not
optimal. Qur choice of the Gaussian filter was based on the requirements of simu
taneous localization in the frequency and spatial domains. We therefore sho
examples in which each of these requirements is severely violated. An ideal on
octave bandpass filter satisfies the localization requirement in the frequenc
domain, but violates it in the spatial domain. The reason is that strict band-

limiting gives rise to sidelobes in the spatial filter, and the consequence of these 3 /_-.v _ w

is that, in the zero-crossing image, strong intensity changes give rise to echoes a

well as to the directly corresponding zero-crossings (see figure 5). These echoes Q

have no direct physical correlate, and are therefore undesirable for early visu : )

processing, ' . 0 7,
On the other hand, if one cuts off the filter in the spatial domain, one acquire -

sidelobes in the frequency domain. Figure 5 also shows a m@ﬁE.@-«qu@ approxi A 4

mation to the second derivative operator, together with an example of the zero ‘

crossings to which it gives rise. This operator sees fewer zero-crossings, essentiall w ﬂ«fwu 9

because it is averaging out the changes that oceur over a wider range of scales / ;

Interestingly, Rosenfeld & Kak (1976, pp. 281-4) discuss the Laplacian in
relation to ‘edge’ detection, but they do not report its having been used ver
effectively. One reason for this is that it is not very effective unless it is used in;
band-limited situation and one uses its zero-crossings, and these ideas do no
appear in the computer vision literature (see, for example, Rosenfeld & Kak 1976
fig. 10, for how the Laplacian has previously been used). In fact, the idea of usin
narrow bandpass differential operators did not appear until the human stere
theory of Marr & Poggio (1979), which was also the first theory to depend
primarily on zero-crossings. : ‘

Another, more practical, reason why ‘edge-detecting’ operators have previous
been less than optimally successful in computer vision is that most current operato:
examine only a very small part of the image, their ‘receptive fields’ are of t
order of 10 to 20 image points at most. This contrasts sharply with the smalle
of Wilson’s four psychophysical channels, the receptive field of which must cover
over 500 foveal cones (see figure 4).

Finally, notice that @”, and hence V2@, is approximately a second derivative
operator, because its Fourier transform is — 4n2¢? exp (—o%w?), which behaved
like —w? near the origin.

(d)

image (a) has been convolved with V¢@ having w = 20 = 6, 12 and 24 pixels,
ade.«MoMm MWM&M& m%%aAmwvnoxggo_% the range of filters er.m.e operato in the human »..o<o.m.. In
(b), (c) and (d) are shown the zero-crossings thus obtained. Notice the fine detail picked
up by the smallest. This set of figures neatly poses our next problem: how does one
combine all this information into a single description?

Tt

N

COMBINING INFORMATION FROM DIFFERENT OCHANNELS .

The signals transmitted through channels that do not overlap in drm,,wﬂo.ﬁlmn
domain will be generally unrelated unless the underlying signal is oobmewgbmﬁ.w.
The critical question for us here is, therefore (and we are indebted to T. Poggio
or conversations on this point), what additional information needs to be taken
fito account when we consider how to combine information from the different
hannels to form a primitive description of the image? In other words, are there
1y general physical constraints on the structure of the i.mﬁ& world ﬁ:m.ﬁ allow
s to place valid restrictions on the way in which information from the different
hannels may be combined ? Figure 6 illustrates the problem that we have to solve.

The spatial coincidence assumption

The additional information that we need here comes mm.oS the constraint Mm
patial localization, which we defined in the previous m.aoson.. It states 25&. _Uza
physical phenomena that give rise to intensity changes in the image are spatially
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ssings may, therefore, be combined into a symbol that we .mrmz call an mmm.o-
sgment, with the attributes of edge-amplitude and width, which we may obtain
s follows. ‘

Calculation of edge-amplitude. Because the assumptions that we have .Emmo mean
1t the type of intensity change involved is a simple one, we can, in @o_y use
hat Marr (1976 figure 1) called the selection criterion, according to which one

localized. Since it is these changes that. produce zero-crossings in the filt
images, it follows that if a discernible zero-crossing is present in a channel cen \
on wavelength A,, there should be a corresponding zero«crossing at the sam
spatial location in channels for wavelengths A > A,. If this ceases to be tru

some wavelength A; > Ay, it will be for one of two reasons: either (@) two or mo
local intensity changes are being averaged together in the larger channel; or ,
two independent physical phenomena are operating to produce intensity change
in the same region of the image but at different scales. An example of situation

would be a thin bar, whose edges will be accurately located by small channels bii : (a)
not by large ones. Situations of this kind can be recognized by the presence of t :
nearby zero-crossings in the smaller channels. An example of situation (b) wou ] , ‘
, ) m 3

be a shadow superimposed on a sharp reflectance change, and it can be recognize

—

two physical phenomena, but, in practice, this situation will be rare. i , ‘ (®) ‘ . —

We can therefore base the parsing of sets of zero-crossing segments from d ,

ferent V2@ channels on the following assumption, which we call the spat

coincidence assumption : , .
If a zero-crossing segment is present in a set of independent V2@ channels:
over a contiguous range of sizes and the segment has the same position and
orientation in each channel, then the set of such zero-crossing segments may
may be taken to indicate the presence of an intensity change in the image
that is due to a single physical phenomenon (a change in reflectance, illumina-
tion, depth or surface orientation).

In other words, provided that the zero-crossings from independent channels o

16URE 7. Parsing of sets of zero-crossing segments. (a) If zero-crossing momgozmmv_._o NMMQ MM@
roughly parallel (as in profile (a) of coHE«E 3 above), F.nman masks omﬁEM i M w mbm .
the smaller masks. There are four possible configurations, shown in ( VHA vmu nd the.
figure represents the way in which the contrast changes across the edge. mwo omdm.eom
cases needs to be detected m@ﬁm.um.e&%r uSeH». ﬁ.wo ,MMM %MMMQWMMQWNM@MM @MMQ MMWQ Eog,

i i are required. Doubly termina , I< s .
: MMMSMM@QMMWMW»MMM@&QQE @E.@ labelled ferminations. H.wwma are Ecmewge% roa.o ».MM& WM@
contrast sign. Termination assertions may EE.W wi% a Q_m.on.EeEEe.% H,”Ho ge orien s
but it is often useful later on to have such positions explicitly available.

m&moem the smallest channel to which the intensity change is mmmobam“:% indis-

inguishable from a step function, and uses that channel m_ob.o to mma:.umam the

contrast by means of the amplitude v derived above. If one has just two 5&4@@%-

dent channels with amplitudes », and v,, an approximation to the edge amplitude

VR +v3). . . .

W\M«ngNawwos of width. The width of the edge in this case ow,u also be omaﬂz”_”w
i the selection criterion. For & narrow cha

rom the channel selected according to . row ehanne

ical notion of width corresponds to the dis

with central wavelength A, the physica . corr fo the dishasioe

‘ ich i ity i is distance is $A, which is approximately w,

er which intensity increases. This dis ] . .

%ridth of the central excitatory region of the receptive field associated with the

most excited channel (in fact, A = nw).

number of channels required is two, and that provided the two channels
reasonably separated in the frequency domain, and their Zero-crossings agree, t|
combined zero-crossings can be taken to indicate the presence of an edge in t

The parsing of sets of 2ero-crossing segments

Figure 6 shows the zero-crossings obtained from two channels whose dimensions
are approximately the same as the two sustained channels present at the fove
in the human visual system (Wilson & Bergen 1979). We now derive the parsing
rules needed for combining zero-crossings from the different channels.

ase (2): bars . .
If two parallel edges with opposite contrast lie only a mEm\z_&,MMWMM em%m i
i i ith associated wavelen at exce

he image, zero-crossings from channels wi . . ce
vﬂsa ww cannot be relied upon to provide accurate information about the positions

Case (1): isolated edges

For an isolated, linearly disposed intensity change, there is a single zero-crossing
present at the same orientation in all channels above some size that depends upon
the channel sensitivity and the spatial extent of the edge. This set of Zer
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w < d). Two other parameters are useful; one is the average orientation of the
Wwo zero-crossing segments, and the other is their average separation.

Our case (2) applies only to situations in which neither zero-crossing segment
terminates and they both remain approximately parallel (w or less apart). When
he two edges are closer together than w for the smallest available channel, the
ero-crossings associated with even the smallest channel will not accurately reflect
he positions of the two edges, they will over estimate the distance between them.
+If the two edges have opposite contrasts that are not too different in absolute
magnitude, the position of the centre of the ‘line segment’ so formed in the image
will be the midpoint of the two corresponding zero-crossings. In these circum-
tances, the parameters associated with the line segment will be more reliable
han those associated with each individual edge.

Case (3): blobs and terminations

It frequently happens that the zero-crossing segments do not continue very far
across the image. Two parallel segments can merge, or be joined by a third seg-
ment, and in textured images they often form small closed curves (see figure 6),
which are quite small compared to the underlying field size. Both situations can
give rise to anomalous effects at larger channel sizes, and so are best made explicit
early on. Following Marr (1976b), the closed contours we call BLoBs, and assign
to them a length, width, orientation and (average) contrast; and the terminations
are assigned a position and orientation (see figure 7¢).

Fieure 8. Combination of information from two channels. Tn (a) and (b) are shown the zero-
crossings obtained from one of the images of figure 4, by means of masks with w = 9
and 18. Because there are no zero-crossings in the larger channel that do not correspond.
to zero-crossings in the smaller channel, the locations of the edges in the combine
description also correspond to (a). In (c), (d) and (e) are shown symbolic representation
of the descriptors attached to the locations marked in (a): (¢) shows the blobs; (d), th
local orientations assigned to the edge segments; and (e), the bars. These diagrams sho
only the spatial information contained in the descriptors. Typical examples of the fu
descriptors are as follows. )

(BLOB (POSITION 146 21) (EDGE (POSITION 104 23) (BAR (POSITION 118 134)

Remarks

Two interesting practical details have emerged from our implementation. First,
the intensity changes at each edge of a bar are, in practice, rarely the same, so it is
perhaps more proper to think of the BAR descriptor as a primitive grouping
predicate that combines two edges the contrasts of which are specified precisely
by the smallest channel. Brightness within the area of the bar will, of course, be
constant. Secondly, it is often the case that the zero-crossings from the small and

(ORIENTATION 105) (ORIENTATION 120) (ORIENTATION 120) from the large masks roughly coincide, but those from the small mask weave
(cONTRABT 76) {(coNTRAST —25) (CONTRAST —25) around much more, partly because of the image structure and partly because of
MMMMMMNQ“VS MMMMMMN&MVE Mﬂwmwmemv& noise and the image tesselation. Local orientation has little meaning over dis-

tances shorter than the width w of the central excitatory region of the V2@ filter,
so if the zero-crossings from the smaller filter are changing direction rapidly
locally, the orientation derived from the larger mask can provide a more stable and
inore reliable measure.

The descriptors to which these correspond are marked with arrows. The resolution o

this analysis of the image of figure 4 roughly corresponds to what a human would g
when viewing it from a distance of about 6 ft (1.83 m).

or contrasts of the edges. In these circunistances, the larger channels must:b
ignored, and the description formed solely from small channels of which the zero
crossing segments do superimpose. An edge can have either positive or negativi
contrast, and so two together give us the four situations shown in figure 7a. Ther
is, of course, no reason why the two edges should have the same contrast, andth
contrast of each edge must be obtained individually from the smallest channel

~

IMPLICATIONS FOR BIOLOGY

We have presented specific algorithms for the construction of the raw primal
ketch, and we now ask whether the human visual system implements these
algorithms or something close to them. There are two empirically accessible
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the separation and lengths of the positive and negative subfields of the receptive
eld of the cell. In addition, tripartite receptive fields did not appear to be more
rientation sensitive than bipartite ones. These points provide good evidence that
imple cells are not linear devices.

(3) If the simple cells perform the convolution, what elements find the zero-
ossings and implement the spatial part of the computation, lining the zero-
bssings up with the convolution orientations, for éxample?

characteristics of our scheme. The first concerns the underlying convolutions ar
zero-crossing segments, and the second, whether zero- crossing segments from: b
different channels are combined in the way that we have described.

Detection of zero-crossing segments

According to our theory, the most economical way of detecting zero- ouommusm
segments requires that the image first be filtered through at least two independe
V2@ channels, and that the zero-crossings then be found in the filtered outpul

tlson’s channel data is consistent with V3@
These zero-crossings may be divided into short, oriented zero- crossing segmen

Wilson’s poa functions are very similar to V2@, and probably indistinguishable
v: means of his experimental technique, which yields about 109, accuracy
(H. G. Wilson, personal communication). In appendix B, we show: (a) that V2@
the limit of the poa function as o/0e, the ratio of the inhibitory to excitatory
ace constants, tends to unity; and (b) that if an approximation to V2@ is to
5.constructed out of the difference of two Gaussian distributions, one excitatory
nd the other inhibitory, the optimal choice on engineering grounds for oy/c is
bout 1.6.

The empirical data

Recent psychophysical work by Wilson & Giese (1977), Wilson & Bergen (197
(see also Macleod & Rosenfeld 1974), has led to a precise quantitative model of tl
orientation-dependent spatial-frequency-tuned channels discovered by omb%‘c_
& Robson (1968). At each point in the visual field, there are four such chann
spanning about three octaves, and their peak sensitivity wavelength incre
linearly with retinal eccentricity. The larger two channels at each point
transient and the smaller two are sustained. These channels can be realized
linear units with bar-shaped receptive fields made of the difference of two Gaussiani
distributions, with excitatory to inhibitory space constants in the ratio of 1:1.7
for the sustained, and 1:3.0 for the transient, channels (Wilson & Bergen 1979
The largest receptive field at each point is about four times the smallest.

This state of affairs is consistent with the neurophysiology since Hubel
Wiesel (1962) originally defined simple cells by the linearity of their response, at
they reported many bar-shaped receptive fields. In addition, simple cell recept:
field sizes increase linearly with eccentricity (Hubel & Wiesel 1974, fig. 6a), an
the scatter in size at each location seems to be about 4 :1 (Hubel & Wiesel 197
fig. 7). It is therefore tempting to identify at least some of the simple cells with th
psychophysical channels. If so, the first obvious way of making the identificatio
18 to propose that the simple cells measure the second directional derivatives, thus
perhaps providing the convolution values from which zero-crossing segments ar
subsequently detected.

There are, however, various reasons why this proposal can probably be excluder
They are:

(1) If the simple cells are ommozeﬁ:% performing a linear convolution d
approximates the second directional derivative, why are they so orientati
sensitive? Three measurements, in principle; suffice to characterize the seco
derivative completely and, in practice, the directional derivatives measured alo
four orientations are apparently enough for this stage (see Marr 19765 ; Hildretl
in preparation), and yet simple cells divide the domain into about 12 orientations

(2) Schiller et al. (19765, pp. 1324-5) found that the orientation sensitivity
simple cells is relatively independent- of the strength of flanking inhibition, an

specific proposal: lateral geniculate X-cells carry VG » I, and some simple cells
etect and represent zero-crossing segments

It is known that retinal ganglion X-cells have receptive fields that are accurately
escribed by the difference of two Gaussian distributions (Rodieck & Stone 1965;
atliff 1965; Enroth-Cugell & Robson 1966). The positive and negative parts are
ot quite balanced (there is a response to diffuse illumination and it increases with
ntensity), and since the ganglion cells have a spontaneous resting discharge, they
ignal somewhat more than just the positive or just the negative part of such a
nvolution. Interestingly, there is little scatter in receptive field sizes of X-cells
‘a given location in the retina (Peichl & Wassle 1979).

There is some controversy about the way in which lateral geniculate receptive
elds are constructed (cf. Maffei & Fiorentini 19725), but it seems most likely that
he on-centre geniculate X-cell fields are formed by combining a small number of
-centre retinal ganglion X-cell fields of which the centres approximately coincide
Cleland et al. 1g71). It seems likely that the scatter in receptive field size arises
n this way, since the amount of scatter required to account for the psychophysical
dings is only a factor of two in both the X and the Y channels. Finally, lateral
eniculate cells give a smaller response to diffuse illumination than do retinal
anglion cells, sometimes giving no response at all (Hubel & Wiesel 1961).

These facts lead us to a particularly attractive scheme, which, for simplicity, we
esent in idealized form.

(1) Measurement of V2@. The sustained, or X-cell, geniculate fibres can be
thought of as carrying either the positive or the negative part of V2G' % I,
where the filter V2@ of figure 2 is, in practice, approximated by a difference
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of Gaussian convolution operator with centre-to-surround space constarits
in the ratio 1:1.75. (One should probably think of this as being a convolitio
on linear intensity values, rather than on their logarithms. The reason for t
is that although the nerve signal in the retina is an adaptation term mul
plied by I/(I+ K), where I is the incident illumination and X = 800 quants
per receptor per second (Alpern et al. 1970), in any given image the rat:

the darkest to the brightest portion rarely exceeds 25 (a local ratio of aroun

1P and Q (figure 9a). By adding nonlinear aAxp owogaom,@ in the longitu-
direction, one can, in a similar way, construct an operator that detects
ed zero-crossing segments. It is easy to see that the pure logical operator of
9b.will respond only to zero-crossing segments whose orientations lie within
nsitivity range (shown roughly dotted). We therefore propose:

iDetection and representation of zero-crossing segments. Part of the function
one subclass of simple cells is to detect zero-crossing segments. Their re-
tive fields include the construction shown in figure 95, with the proviso
t the non-linearities may be weaker than the pure logical ANDs shown
ere. It is, however, a critical feature of this model that the (P axD Q) inter-
ion (figure 9a) across the zero-crossing segment should contain a strong
,osmwams. component and that the longitudinal interaction (e.g. between the
ds in figure 9b) contains at least a weak nonlinear component. Marr &
Iman’s (1979) full model for simple cells contains this organization, but
cludes additional machinery for detecting the direction of movement of the
7ero-crossing segment, and it is this that provides a role for the two larger
ansient channels. .

) 'Signalling amplitude. Ideally, the output of the cell should be gated by
e logical axp function of (2), but its value should be the average local
smplitude v associated with the zero-crossings along the segment. As we
(a), if P represents an on-centre geniculate X-cell receptive field, and Q, an office w earlier, this may be found by measuring the average local value of the
oMo. then if both are active, & zero-crossing Z in the Laplacian passes between t B lope of the zero-crossings, which (in suitable units) is equal to the sum of the
they are connected to a logical AND gate, as shown, then the gate will ‘detect Tfiputs to the cell
presence of the zero-crossing. If several are arranged in tandem, as in (b), and £ " .
connected .v%.HommoE ANDSs, the resulting operation detects an oriented zero-crosy
segment S_wr_.b. the orientation bounds given roughly by the dotted lines. Thig iz
our most primitive model for simple cells. Idéally, one would like gates such that the
& response only if all (P, Q) inputs are active, and the magnitude of the response

<m.1om 4:& their sum. Marr & Ullman (1979) extend this model to include direct;
selectivity. ,

Freurn 9. Proposed mechanism whereby some simple cells detect zero-crossing segments

4) Sampling density. Finally, for this scheme to be successful, the sampling
ensity of the function V2@ * I must be great enough to ensure that the zero-
rossings may subsequently be localized accurately enough to account for the
ndings about hyperacuity (see, for example, Westheimer & McKee 1977),
hich means roughly to within &'. This implies an extremely high precision
of representation, but in layer IV of the monkey’s striate cortex, there
apparently exists a myriad of small, centre-surround, non-oriented cells
Hubel & Wiesel 1968). Barlow (1979) and Crick et al. (1980) have suggested
that these cells may be involved in the reconstruction of the V2@ function to
an adequate precision for hyperacuity.

30 is seen as a light source (Ullman 1976)), and over such ranges this functio
does not depart far from linearity.) At each point in the visual field, there ar
two sizes of filter (the minimum required for combining zero-crossings betweet
channels), and these correspond to Wilson & Bergen’s (1979) N and § cha
nels. The one-dimensional projection.of the widths w of the central oxo?mao,w%

regions of these two channels scales linearly with eccentricity from 3.1/ and
6.2" at the central fovea.

The empirical consequences of this overall scheme are set out by Marr & Ullman

Combination of zero-crossings

The basic idea behind our model for the detection of Zero-crossings rests on the ipirical predictions for psychophysics
following observations: if an on-centre geniculate cell is active at location P aifl
an off-centre cell is active at nearby location Q, then the value of V2@ # I passes
through zero between P and Q (see figure 9a). Hence, by combining the signal§
from P and Q through a logical AND operation, one can construct an operator:fo

detecting when a zero-crossing segment (at some unknown orientation) passe!

ere are several aspects of our algorithm, for combining zero-crossings from
erent channels, that are accessible to psychophysical experiment. They are:
j the phase relations; (b) combination of zero-crossings from different channels,
d (c) the special cases that arise when zero-crossings lie close to one another.

1) Phase relations. Our theory predicts that descriptors need exist only for sets
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of zero-crossings, from different channels, that coincide spatially (i.e. have
phase relation of 0 or ). Interestingly, Atkinson & Campbell (1974) superimpo
1 and 3 cycles/deg sinusoidal gratings of the same -orientation, and found thaftg
the number of perceptual fuctuations per minute (which they called rate:d
monocular rivalry) was low near the in-phage, 0, and out-of-phase, n, positions;
reached a high plateau for intermediate phase positions. They concluded (p:
that the visual system contains a device that ‘seems to be designed to resp
only to 0 and = phase relation. When . . -[it] ... is active, it gives rise to a sta
percept that is the sum of the two spatial frequency selective channels’ (cf.:
Maffei & Fiorentini 1972 a). Qur theory would predict these results, if the additior
assumption were made that units exist that represent explicitly the edge segme
descriptor formed by combining appropriately arranged zero-crossing segments

(2) The parsing process. The main point here is that the description of an ed
(its width, amplitude and orientation) can be obtained from the (smallest) chant
whose zero-crossing there has maximum slope. As Marr (1976b, pp. 496497
observed, this is consistent with Harmon & Julesz’s (1973) finding that n

.explicit representation of (oriented) blobs and terminations. Units e.rm& re-
esent them should be susceptible to psychophysical adaptation, and, in fact,
ayama & Roberts (1972) and Burton & Ruddock (1978) have found wi&goo
units that are sensitive to bars whose length does not exceed three times the

sequences for neurophysiology
There are several ways of implementing the parsing process that we have
scribed, but it is probably not worth setting them out in detail until we have
)d evidence from psychophysics about the parsing algorithm that is actually
and we know whether simple cells, in fact, implement the detection of
-crossing segments. Without these pieces of information firm predictions
nnot be made, but we offer the following suggestions as a possible framework
the neural implementation. (1) The four types of ‘bar’ detectors could be
plemented at the very first, simple cell level (along the lines of figure w,. but
ing fed by three rows of centre—surround cells instead of two). A.wv For relatively
bands spectrally adjacent to the spectrum of a picture are most effectiv lated edges, there should exist oriented mmmo-momagzoﬁmoﬂbm neurons that
suppressing recognition, since these have their greatest effect on mask respor mbine zero-crossing segment detectors (simple omz.mv .m.oB different channels
amplitudes near the important mask sizes. It also explains why removal of #hen, and only when, the segments are spatially coincident. (3) Detectors for
middle spatial frequencies from such an image leaves a recognizable imag ‘minations and blobs (doubly-terminated olm.i.bm vpamv.mmws to have been found
Lincoln behind a visible' graticule (see Harmon & Julesz 1973). The reason is th eady (Hubel & Wiesel 1962, 1968). Interestingly, Schiller et al. (19764) mo.sbm
the zero-crossings from different mask sizes fail to coincide, and the gap in at even some simple cells are stopped. Our scheme is consistent with this since
spectrum means that the small bar descriptors fail to account for this discrepa quires such detectors at a very early stage.
Hence, the assumption of spatial coincidence cannot be used, and the outputs fré
the different mask sizes are assumed to be due to different physical phenom
Accordingly, they give rise to independent descriptions. ‘

There is another possible but weaker consequence. If one makes the ext
assumption, that the selection criterion is implemented by inhibitory connec
between zero-crossing segment detectors that are spatially coincident and lying]
adjacent in the frequency domain, then one would expect to find an inhibitd
interaction between channels at the cortical, orientation-dependent level. There
in fact, evidence that this occurs (see, for example, Tolhurst 1972; de V.
1977a). :

(3) Bar-detectors. Case (2) of our parsing algorithm requires the specific d
tion of close, parallel, zero-crossing segments. This requires the existence of 1
sensitive, at each orientation, to one of the four cases (black bar, white ba
dark edges, two light edges) and sensitive to their width (i.e. the distance separ:
ing the edges) rather than to spatial frequency characteristics of the whole patterr
Adaptation studies that lead to these conclusions for white bars and for black’
have recently been published (Burton et al. 1977; de Valois 1977b). If our algs
rithm is implemented by the human visual system, the analogous result sho#
hold for the remaining two cases (see figure 7a).

(4) Blob-detectors and terminations. Case (3) of our parsing algorithm requi

DiscussioN

The concept of an ‘edge’ has a partly visual and wﬁi%. physical meaning. One
ur main purposes in this article is to make explicit this dual dependence: our
sfinition of an edge rests lightly on the early assumptions of SSO.H.aB. 1 about
fectional derivatives and heavily on the constraint of spatial Hoom‘rsmﬁcb..;

Jur theory is based on two main ideas. First, one &B@:mmm the &memoamﬁ of
tensity changes by dealing with the image separately at &m.o.uma .H.mmo_:So:m.
o' detection process can then be based on finding zero-crossings in a second
Fivative operator, which, in practice, can be the (non-oriented) H@E@ﬂ@b. The
presentation at this point consists of zero-crossing momn._mdem. @Jm ar.m:. m_o.@om.
s representation is probably complete and is, therefore, in H.:.ESEP ngsﬂo.
i4 had previously been given only an empirical demonstration by Marr and by

see Marr 1978, fig. 7). .

A.WNM Mﬂﬂ@m”whge step, MN oo:w_&bgm information from different .ormbbom_.m into
single description, rests on the second main idea .ow the ﬁrao@, which we oEM_H-
ted as the spatial coincidence assumption. Hvr%m_o.& edges will wwomsow ammm y
incident zero-crossings in channels of nearby sizes. .Hrw m@mﬁm..‘_ ooEoM ence
sumption asserts that the converse of this is true, that is the coincidence of zero-
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crossings is sufficient evidence for the existence of a real physical edge. I
zero-crossings in one channel are not consistent with those in the others, the
probably caused by different physical phenomens, so descriptions need t ‘

: . Res. 17, 209-215.

formed from both sources and kept somewhat :
. .. P . ° soparate. , oth-Cugell, C. & Robson, J. G. 1966 The contrast sensitivity of retinal ganglion cells of
Finally, the basic idea, that some simple cells detect and represent zero-cr “the cat. J. Physiol., Lond. 187, 517-552. .

segments and that this is carried out mwsﬁ:\mdmoﬁm_% at different scales, has .mo sham, N. 1974 Visual detection of aperiodic spatial stimuli by probability summation
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n i rems 1 and 2: [ is a ségment of the y-axis, containing the origin;
awwsnw‘vm. W”%MHO&MMM%%% of it. Provided that %.MW@Q is conmemﬁe in N(I), eroowmd._ 1 .mem.emm
that the orientation of the line of zero-crossings is perpendicular to the orientation at
which the zero-crossings have maximum slope.

APPENDIX A

l

THEOREM 1 . THEOREM 2

Let I be an open line segment of the y-axis, containing the origin 0. Suppo:
that f(x,y) is twice continuously differentiable and that N (I) is an open tw
dimensional neighbourhood of I. Assume that 92f/62® = 0 on I. Then, if of/
constant in N(I), the slope of the second directional derivative taken perpendi
to [ (i.e., the slope of 3%/0x?) is greater than the slope of the zero-crossing alor
any other line through O. , ‘

lane. Let  be an open line segment along the axis x = 0. Then the two conditions
(i) V3f =0on!
and (ii) 0%f/0x* = Oonl
ivalent if and only if f(0, ¥) is constant or linear on /.

Proof

Consider the line segment 2 = (r cos 6, r sin 0) for fixed @ and values L I f(0, ) is linear on I, 3%f/3y* = 0 on I. Hence, V3 = 0 there implies that
sufficiently small that Q lies entirely within N(I) (see figure 10). Now 55
Sz for 8% /822 ete., we have

(C3f/022), 4 = (f,, cos? 0+ fry 2 8in 0 cos 6 +f,, sin? 8), ,
A.\.HH cos? %v? ‘4

since the condition of the theorem that fy be constant implies that f,,
both zero. As required, therefore, the above quantity is zero at r =
maximum slope when § = 0,

onversely, if 82f/dx% = V2f = 0 on I, then 03f/dy® = 0 on I, and so f(0,y)
tvaries at most linearly on 1.

APPENDIX B
poas and VG
G is the limit of a DOG

ilson’s poe function may be written

Doa (0, 0y) = [1/(2m)t o] exp (—2?/20%) — [1/(2m)t o] exp (—a?/20%),  (3)
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where o. and oy are the excitatory and inhibitory space constants. Writ
Oe = 0, and oy = 0+ 80, the right hand side varies with

The raw primal sketch

217

I {a)
(1/0) exp (~2%/20%— [1/(0 +50)] exp [~ %/2(o + 50)?] 4 200 100} )
= 80 (0/00) (1/o exp [—x2/202]). 2 M‘ .
This derivative is equal to — (1 /0% —a2/0%) exp (—x2/20?), which equals @ Jhm“ Wv\._ .
to a constant (text equation 5).) ; g Bl
E 15} g 50f
Approximation of VG by a poG .m m
The function ¢ g
P0G (07, 7)) = [1/(2m)} o] exp (—2%/20%)  [1/(2n)bo,] exp (—2/20%) 10 3 5 0 3 . 5
1
has Fourier transform : oo,
D06 () = exp (— o2 w?/2)—exp (—of w?/2)
Notice that Do (w) behaves like w? for values of w that are small compared wi {c)

oe and oy, so that these filters, in common with V2@, approximate a sec
derivative operator.

yet allows the filter adequ
sensitivity: for, clearly, as the space constants approach one another, the con

butions of the excitatory and inhibitory components become identical and.
sensitivity of the filter is reduced.

~ The bandwidths at half sensitivity and at half power and the peak sensitit
all depend together on the value of o /0e in a way that is shown in figur
From this we see that: (i) the bandwidth at half sensitivity increases very slo
up to about oy/ge = 1.6, increases faster from there to oi/oe = 8.0
thereafter approximately constant; (ii) the peak sensitivity of the filter is desul ;
for small 7y/c, reaching about 33 % at o1/oe = 1.6. Since our aim is to creat
narrow bandpass differential operator, we should choose 01/0e to minimize’
bandwidth. Since the bandwidth is approximately constant for oy/c, < 1.6,
since sensitivity is low there, the minimal value one would in practice choos

0y/0 is around 1.6, giving a half-sensitivity bandwidth of 1.8 octaves &
half power bandwidth of 1.3 octaves.

B 11. The values of certain parameters associated with &m.oaonco.om.ﬁmﬁm.mmg (poa)
magks, with excitatory and inhibitory space constants o, and o,. (a) For various values
of 0,/,, we show the half-sensitivity bandwidth (+) and ‘..&o half-power Ugmﬁmev.A .Ov. of
he filter. In (b} is shown its peak sensitivity in the “m,o.”:._on plane. (The peak sensitivity
f the excitatory component alone equals 100 %, on e.?m scale.) E..Hro arguments in e.vo
ppendix show that the best engineering approximation to V2@ using & DOG occurs with
/0, around 1.6. In figure (c), this particular poa is m:o.ﬂum dotted against the operator
V2@ with the appropriate o. The two profiles are very similar.




