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m Essential components of DSP
m Frequency analysis
m Sampling
m Filter

m Different types of signals

m continuous vs. discrete vs. digital
m deterministic vs. random



Basic sequences
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m Unit sample sequence (or impulse sequence):

Discrete-Time
ign. 0 n # 0
SIETS = ’ ’
>
m Unit step sequence: u[n] = { é’ Z; 8’

m Exponential sequence: x[n] = Aa”

m real sequence
m complex sequence

m Sinusoid sequence: x[n] = Acos(wgn + ¢)



Basic sequences (cont’)
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m What are their relationships?



On periodicity
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- m Continuous-time periodic signals: x(t) = x(t+ T)
Sanals m Discrete-time periodic signals: x[n] = x[n + N]
m Exercises: What is the period of the following signals
m x[n] = cos(wn/4)
m x[n] = cos(37n/8)
m Questions:
m Is it always true that the higher the frequency, the lower
the period?
m Is it true that the sinusoidal sequence is always
periodic?



On periodicity (cont)
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Sinusoids
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m Sinusoids



Sinusoid
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Xa(t) = Acos(Qt +0), —oo < t < o0

or
Xa(t) = Acos(2nFt + 6), —oo < t < 00
where
m A: amplitude
m ¢: phase (radians) or phase shift
m Q = 2« F: radian frequency (radians per second, rad/s)
m F: cyclic frequency (cycles per second, herz, Hz)

m T, = 1/F: fundamental period (sec) such that
Xa(t + Tp) == Xa(t)



More on frequency
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X(t)=10cos(2pi(440)t)
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Figure: Sinusoids with different frequencies.

What if F =07




More on frequency - How does it sound?"
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m A440
m A880
m C236

m A tuning fork demo

'The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.



More on frequency - The MATLAB code
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Lecture 1 - Sinusoid
plot a sinusoidal signal and listen to it

440Hz is the frequency of A above middle C on a musical scale
it is often used as the reference note for tuning purpose

o o

ES

clear buffer
clear all;
clf;

L R SR
o

Sinusoids

10 % specify parameters
F =440;
12 t = 0:1/F/30:1/F*5;
x = 10%cos (2+pi*Fxt — 0.4%pi);

[
o

plot the signal

16 plot (t,x);

17 title(’Sinusoidal signal x(t)’);
18 xlabel (Time t (sec)’);

19 ylabel (Amplitude’);

20 grid on;

22 % play the signal
23 sound(x)



More on phase - Phase shift vs. Time shift
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m Phase shift 8 determines the time location of the
maxima and minima of a cosine wave
m s(t) vs. s(t—t) vs. s(t+ t) when t; is positive
m Delayed in time vs.
m Advanced in time

m The phase shift is negative when the time shift is
positive (a delay)

Xa(t —t) = Acos(Q(t — t1)) = Acos(Q2t + )

where 6 = —Qt, therefore, t; = —6/Q.
m Principal value of the phase shift: —7 and +

4| < Tp/2= —n1<O<T7
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Complex exponential
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m Complex exponential signals



Complex exponential signals
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m According to Euler’s formula

Xa(t) Acos(Qt + 0) = R{Ae/@1+0)}
= R{A?e) = R{Xe/U}

m The rotating phasor interpretation

Sonas T m Complex amplitude (or Phasor): X = ¢

m Rotating phasor: multiplying the fixed phasor X by &/
causes the phasor to rotate. If Q is positive, the
direction of rotation is counterclockwise; when Q is
negative, clockwise.

m The phase shift § defines where the phasor is pointing
when =0

m A rotating phasor demo?

2The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.
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Spectrum and Time-frequency spectrum
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m Spectrum: frequency domain representation of the
signal that reveals the frequency content of the signal

m Two-sided spectrum: According to inverse Euler’'s
formula

A .
Xa(t) = Acos(Qt + 0) = Ee"’e’m + geffee*fm

such that the sinusoid can be interpreted as made up of
2 complex phasors

(GX.F). X —F)

m Spectrogram: frequency changes over time
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Application 1: Phasor addition
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m When adding several sinusoids having the same
frequency but different amplitudes and phases, the
resulting signal is a complex exponential signal with the
same frequency

N
> " Axcos(Qt + 6) = Acos(Qt + 6)
k=1

m Proof
m Exercise:

1.7 cos(27(10)t+707/180)+1.9 cos(2x(10)t-+200/180)



Application 2: Producing new signals from

sinusoids
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m Additive linear combination
Xa(t) = Ao+ 2;721 Ai cos(2mFyt + 6k)

Xo + Yiy RAXePTFl}
Xo + 22121{%612775(1‘ + 7}(67]271':‘:;(1’}

where X = Ael’.
m 2N + 1 complex phasors

1 1. 1 1.
{(X070)7 (§X17 F1)7 (§X1 ’ _F1)7 (§X27 F2)7 (§X27 _F2)7 o }

m Exercise

Xa(t) = 10 + 14 cos(2007t — w/3) + 8 cos(5007t + 7/2)



Application 3: Adding two sinusoids with nearly
identical frequencies - Beat notes
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m Adding two sinusoids with frequencies, F; and F,, very
close to each other

Xg(t) = cos(2mF1t) + cos(2r Fat)

where
mfF=F—Fxand Fo = F;+ Fa.
m F. = J(Fi + F2) is the center frequency
m Fp = }(F> — Fy) is the deviation frequency
m Ingeneral, Fao << F;

m Two-sided spectrum representation,

{(%7 F1)7 (%a _F1)7(%> F2)7 (%a _FZ)}
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Adding two sinusoids with nearly identical
frequencies - Beat notes (cont)

Xa(t) =

m Rewrite x;(t) as a product of two cosines

%{ej&rﬁt} 4 §R{e/27rF2t}
R{ef2r(Fe—Fa)t | gizm(ForFa)ty
§R{ei27cht(e—j27rFAt+ ejZﬂFAt)}
R{e2 Fel(2 cos(2nFat))}
2cos(2nFat) cos(2nFct)

m Adding two sinusoids with nearly identical frequencies
= Multiplying two sinusoids with frequencies far apart

m What is the effect of multiplying a higher-frequency
sinusoid (e.g., 2000 Hz) by a lower-frequency sinusoid
(e.g., 20 Hz)? The “beating” phenomenon.
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Adding two sinusoids with nearly identical

frequencies

- Beat notes (cont)
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Adding two sinusoids with nearly identical

frequencies: Beat notes (cont’)
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Beat signal with fc=2000, fdel=2
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Figure: Beat notes and the spectrogram.



Application 4: Multiplying sinusoids - Amplitude

modulation
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m Modulation for communication systems: multiplying a
low-frequency signal by a high-frequency sinusoid

Xg(t) = va(t) cos(2mF.t)

B Vvy(t): the modulation signal to be transmitted, must be
a sum of sinusoids

m cos(2wF.t): the carrier signal

m F: the carrier frequency

m f; should be much higher than any frequencies
contained in the spectrum of v,(t).

m Exercise:
va(t) = 5+ 2cos(40xt), Fc = 200 Hz

m Difference between a beat note and an AM signal?



Multiplying sinusoids - Amplitude modulation
(cont’)
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Application 5: Adding cosine waves Wit
harmonically related frequencies - Periodic
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m Fourier Series Theorem: Any periodic signal can be
approximated with a sum of harmonically related
sinusoids, although the sum may need an infinite
number of terms.

Xa(t) = Ao+ N4 Axcos(2rkFot + 0)
_ X0+%{Zg:1 Xke/27rkFot}

m Fy = kFy: the harmonic of Fy
m fy: the fundamental frequency
m Estimate interesting waveforms by clever choice of
Xk = A /%



Adding cosine waves with harmonically related

frequencies - Periodic waveforms (cont’)
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m Fourier analysis: starting from x;(t) and calculate Xj.
Xk can be calculated using the Fourier integral

2 T _ 1 T
X = 2 / xa(t)e 27 Togt X — 1 / xa(t)dlt
To Jo To Jo

m Ty: the fundamental period of x4(t)
m Xp: the DC component

m Fourier synthesis: starting from Xj and calculate x;(f)
m Demo: synthetic vowel ('ah’), Fp = 100 Hz

Xa(t) = R{Xpe22Fot 1 X, gPm4Fot | Xgl2m5Fol
Xig6/2m16F0t | X, e/2717Fot)

m Exercise: How to approximate a square wave?
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Application 6: Frequency modulation - the

Chirp signal

m A “chirp” signal is a swept-frequency signal whose
frequency changes linearly from some low value to a
high one.

m How to generate it?

m concatenate a large number of short
constant-frequency sinusoids, whose frequencies step
from low to high

m time-varying phase (t) as a function of time

Xa(t) = R{AYD} = Acos(v(t))

m instantaneous frequency: the derivative (slope) of the
phase
d
Q(t) = (0, F(1) = Q(1)/(2n)
m Frequency modulation: frequency variation produced
by the time-varying phase. Signals of this class are
called FM signals




Frequency modulation - the Chirp signal (cont’)
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m Linear FM signal: chirp signal
m Exercise: quadratic phase

Y(t) = 2mut? 4+ 2nFot + 6, F(t) = 2ut + Fy

m Reverse process: If a certain linear frequency sweep is
desired, the actual phase can be obtained from the
integral of Q(t).

m Exercise: synthesize a frequency sweep from F; = 220
Hz to Fo» = 2320 Hz over the time interval t = 0 to
t=T, =3 sec.



Frequency modulation - the Chirp signal
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Euler’s formula and Inverse Euler’s formula
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m Euler’s formula
e = cosf +jsing

m Inverse Euler’s formula

o + it

—

el — eIt
2

Appendix cos 9 _

sing =



Basic trignometric identities
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sin®0 + cos? 6 = 1
cos 20 = cos? ) — sin® 6
sin20 = 2sinfcos

Appendix

sin(a £+ ) = sinacos 8 + cosasin 3

cos(a + 3) = cosacos B Fsinasin g




Basic properties of the sine and cosine

functions

Lecture 2

m Equivalence
sinf = cos(§ — w/2) or cos® = sin(d + 7/2)
m Periodicity
cos(f + 2kn) = cos 6, when k is an integer
e m Evenness of cosine
cos(—6) = cos ¥
m Oddness of sine

sin(—#) = —sinéd



Basic properties of the sine and cosine

functions (cont’)
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m Zeros of sine
sin(mk) = 0, when Kk is an integer
m Ones of cosine
cos(2wk) = 1, when k is an integer

Appendix m Minus ones of cosine
1 . .
cos[2n(k + 5)] = —1, when k is an integer

m Derivatives

dsing
do

dcost

0
0s /0, do

—sind
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