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Recap

Essential components of DSP
Frequency analysis
Sampling
Filter

Different types of signals
continuous vs. discrete vs. digital
deterministic vs. random
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Basic sequences

Unit sample sequence (or impulse sequence):

δ[n] =

{
0, n 6= 0,
1, n = 0

Unit step sequence: u[n] =

{
1, n ≥ 0,
0, n < 0

Exponential sequence: x [n] = Aαn

real sequence
complex sequence

Sinusoid sequence: x [n] = A cos(ω0n + φ)
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Basic sequences (cont’)

What are their relationships?
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On periodicity

Continuous-time periodic signals: x(t) = x(t + T )

Discrete-time periodic signals: x [n] = x [n + N]

Exercises: What is the period of the following signals
x [n] = cos(πn/4)
x [n] = cos(3πn/8)

Questions:
Is it always true that the higher the frequency, the lower
the period?
Is it true that the sinusoidal sequence is always
periodic?
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On periodicity (cont’)
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Sinusoid

xa(t) = A cos(Ωt + θ),−∞ < t <∞

or
xa(t) = A cos(2πFt + θ),−∞ < t <∞

where
A: amplitude
θ: phase (radians) or phase shift
Ω = 2πF : radian frequency (radians per second, rad/s)
F : cyclic frequency (cycles per second, herz, Hz)
Tp = 1/F : fundamental period (sec) such that
xa(t + Tp) = xa(t)
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More on frequency
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Figure: Sinusoids with different frequencies.

What if F = 0?
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More on frequency - How does it sound?1

A440
A880
C236
A tuning fork demo

1The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.
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More on frequency - The MATLAB code

1 % Lecture 1 - Sinusoid
2 % plot a sinusoidal signal and listen to it
3 % 440Hz is the frequency of A above middle C on a musical scale
4 % it is often used as the reference note for tuning purpose
5 %
6 clear buffer
7 clear all;
8 clf;
9

10 % specify parameters
11 F =440;
12 t = 0:1/F/30:1/F*5;
13 x = 10*cos(2*pi*F*t - 0.4*pi);
14
15 % plot the signal
16 plot(t,x);
17 title(’Sinusoidal signal x(t)’);
18 xlabel(’Time t (sec)’);
19 ylabel(’Amplitude’);
20 grid on;
21
22 % play the signal
23 sound(x)
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More on phase - Phase shift vs. Time shift

Phase shift θ determines the time location of the
maxima and minima of a cosine wave
s(t) vs. s(t − t1) vs. s(t + t1) when t1 is positive

Delayed in time vs.
Advanced in time

The phase shift is negative when the time shift is
positive (a delay)

xa(t − t1) = A cos(Ω(t − t1)) = A cos(Ωt + θ)

where θ = −Ωt1, therefore, t1 = −θ/Ω.
Principal value of the phase shift: −π and +π

|t1| ≤ Tp/2 =⇒ −π < θ ≤ π
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Complex exponential signals

According to Euler’s formula

xa(t) = A cos(Ωt + θ) = <{Aej(Ωt+θ)}
= <{AejθejΩt} = <{XejΩt}

The rotating phasor interpretation
Complex amplitude (or Phasor): X = ejθ

Rotating phasor: multiplying the fixed phasor X by ejΩt

causes the phasor to rotate. If Ω is positive, the
direction of rotation is counterclockwise; when Ω is
negative, clockwise.
The phase shift θ defines where the phasor is pointing
when t = 0

A rotating phasor demo2

2The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.
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Spectrum and Time-frequency spectrum

Spectrum: frequency domain representation of the
signal that reveals the frequency content of the signal
Two-sided spectrum: According to inverse Euler’s
formula

xa(t) = A cos(Ωt + θ) =
A
2

ejθejΩt +
A
2

e−jθe−jΩt

such that the sinusoid can be interpreted as made up of
2 complex phasors

{(1
2

X ,F ), (
1
2

X ∗,−F )}

Spectrogram: frequency changes over time
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Application 1: Phasor addition

When adding several sinusoids having the same
frequency but different amplitudes and phases, the
resulting signal is a complex exponential signal with the
same frequency

N∑
k=1

Ak cos(Ωt + θk ) = A cos(Ωt + θ)

Proof
Exercise:

1.7 cos(2π(10)t+70π/180)+1.9 cos(2π(10)t+200π/180)
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Application 2: Producing new signals from
sinusoids

Additive linear combination

xa(t) = A0 +
∑N

k=1 Ak cos(2πFk t + θk )

= X0 +
∑N

k=1<{Xkej2πFk t}
= X0 +

∑N
k=1{

Xk
2 ej2πFk t +

X∗
k

2 e−j2πFk t}

where Xk = Aejθk .
2N + 1 complex phasors

{(X0,0), (
1
2

X1,F1), (
1
2

X ∗
1 ,−F1), (

1
2

X2,F2), (
1
2

X ∗
2 ,−F2), · · · }

Exercise

xa(t) = 10 + 14 cos(200πt − π/3) + 8 cos(500πt + π/2)
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Application 3: Adding two sinusoids with nearly
identical frequencies - Beat notes

Adding two sinusoids with frequencies, F1 and F2, very
close to each other

xa(t) = cos(2πF1t) + cos(2πF2t)

where
F1 = Fc − F∆ and F2 = Fc + F∆.
Fc = 1

2 (F1 + F2) is the center frequency
F∆ = 1

2 (F2 − F1) is the deviation frequency
In general, F∆ << Fc

Two-sided spectrum representation,

{(1
2
,F1), (

1
2
,−F1), (

1
2
,F2), (

1
2
,−F2)}
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Adding two sinusoids with nearly identical
frequencies - Beat notes (cont’)

Rewrite xa(t) as a product of two cosines

xa(t) = <{ej2πF1t}+ <{ej2πF2t}
= <{ej2π(Fc−F∆)t + ej2π(Fc+F∆)t}
= <{ej2πFc t (e−j2πF∆t + ej2πF∆t )}
= <{ej2πFc t (2 cos(2πF∆t))}
= 2 cos(2πF∆t) cos(2πFc t)

Adding two sinusoids with nearly identical frequencies
= Multiplying two sinusoids with frequencies far apart
What is the effect of multiplying a higher-frequency
sinusoid (e.g., 2000 Hz) by a lower-frequency sinusoid
(e.g., 20 Hz)? The “beating” phenomenon.
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Adding two sinusoids with nearly identical
frequencies - Beat notes (cont’)
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Adding two sinusoids with nearly identical
frequencies: Beat notes (cont’)
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Figure: Beat notes and the spectrogram.



Lecture 2

Recap

Discrete-Time
Signals

Review
Sinusoids

Complex exponential
signals

Spectrum

Applications

Appendix

Application 4: Multiplying sinusoids - Amplitude
modulation

Modulation for communication systems: multiplying a
low-frequency signal by a high-frequency sinusoid

xa(t) = va(t) cos(2πFc t)

va(t): the modulation signal to be transmitted, must be
a sum of sinusoids
cos(2πFc t): the carrier signal
Fc : the carrier frequency
Fc should be much higher than any frequencies
contained in the spectrum of va(t).

Exercise:

va(t) = 5 + 2 cos(40πt),Fc = 200 Hz

Difference between a beat note and an AM signal?
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Multiplying sinusoids - Amplitude modulation
(cont’)
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Application 5: Adding cosine waves with
harmonically related frequencies - Periodic
waveforms

Fourier Series Theorem: Any periodic signal can be
approximated with a sum of harmonically related
sinusoids, although the sum may need an infinite
number of terms.

xa(t) = A0 +
∑N

k=1 Ak cos(2πkF0t + θk )

= X0 + <{
∑N

k=1 Xkej2πkF0t}

Fk = kF0: the harmonic of F0
F0: the fundamental frequency

Estimate interesting waveforms by clever choice of
Xk = Akejθk
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Adding cosine waves with harmonically related
frequencies - Periodic waveforms (cont’)

Fourier analysis: starting from xa(t) and calculate Xk .
Xk can be calculated using the Fourier integral

Xk =
2
T0

∫ T0

0
xa(t)e−j2πkt/T0dt ,X0 =

1
T0

∫ T0

0
xa(t)dt

T0: the fundamental period of xa(t)
X0: the DC component

Fourier synthesis: starting from Xk and calculate xa(t)
Demo: synthetic vowel (’ah’), F0 = 100 Hz

xa(t) = <{X2ej2π2F0t + X4ej2π4F0t + X5ej2π5F0t +
X16ej2π16F0t + X17ej2π17F0t}

Exercise: How to approximate a square wave?
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Application 6: Frequency modulation - the
Chirp signal

A “chirp” signal is a swept-frequency signal whose
frequency changes linearly from some low value to a
high one.
How to generate it?

concatenate a large number of short
constant-frequency sinusoids, whose frequencies step
from low to high
time-varying phase ψ(t) as a function of time

xa(t) = <{Aejψ(t)} = A cos(ψ(t))

instantaneous frequency: the derivative (slope) of the
phase

Ω(t) =
d
dt
ψ(t),F (t) = Ω(t)/(2π)

Frequency modulation: frequency variation produced
by the time-varying phase. Signals of this class are
called FM signals
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Frequency modulation - the Chirp signal (cont’)

Linear FM signal: chirp signal
Exercise: quadratic phase

ψ(t) = 2πµt2 + 2πF0t + θ,F (t) = 2µt + F0

Reverse process: If a certain linear frequency sweep is
desired, the actual phase can be obtained from the
integral of Ω(t).
Exercise: synthesize a frequency sweep from F1 = 220
Hz to F2 = 2320 Hz over the time interval t = 0 to
t = T2 = 3 sec.



Lecture 2

Recap

Discrete-Time
Signals

Review
Sinusoids

Complex exponential
signals

Spectrum

Applications

Appendix

Frequency modulation - the Chirp signal
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Euler’s formula and Inverse Euler’s formula

Euler’s formula

ejθ = cos θ + j sin θ

Inverse Euler’s formula

cos θ =
ejθ + e−jθ

2

sin θ =
ejθ − e−jθ

2j
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Basic trignometric identities

sin2 θ + cos2 θ = 1

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 sin θ cos θ

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ
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Basic properties of the sine and cosine
functions

Equivalence

sin θ = cos(θ − π/2) or cos θ = sin(θ + π/2)

Periodicity

cos(θ + 2kπ) = cos θ, when k is an integer

Evenness of cosine

cos(−θ) = cos θ

Oddness of sine

sin(−θ) = − sin θ
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Basic properties of the sine and cosine
functions (cont’)

Zeros of sine

sin(πk) = 0, when k is an integer

Ones of cosine

cos(2πk) = 1, when k is an integer

Minus ones of cosine

cos[2π(k +
1
2

)] = −1, when k is an integer

Derivatives

d sin θ
dθ

= cos θ,
d cos θ

dθ
= − sin θ
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