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Roadmap

Introduction
Discrete-time signals
Discrete-time systems

LTI systems: the unit sample response h[n] uniquely
characterizes an LTI system
Linear constant-coefficient difference equation
Frequency response: H(ejω)
Fourier transform

z transform
The z-transform, X (z) =

∑∞
n=−∞ x [n]z−n

Region of convergence - the z-plane
System function, H(z)
Properties of the z-transform
The significance of zeros
The inverse z-transform, x [n] = 1

2πj

∮
C X (z)zn−1dz:

inspection, power series, partial fraction expansion
Relationships between the n, ω, and z domains
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Review - Design structures

Different representations of causal LTI systems
LCDE with initial rest condition
H(z) with |z| > R+

Block diagram vs. Signal flow graph and how to
determine system function (or unit sample response)
from the graphs
Design structures

Direct form I (zeros first)
Direct form II (poles first) - Canonic structure
Transposed form (zeros first)

IIR: cascade form, parallel form, feedback in IIR
(computable vs. noncomputable)
FIR: direct form, cascade form, parallel form, linear
phase FIR
Metric (why study design structures?)

computational resource
precision



Lecture 10

Recap

Finite
Numerical
Precision

Coefficient Q

Sources of errors

y [n] = ay [n − 1] + x [n]

Coefficient quantization problem: a→ â
Input quantization error: x [n]→ x̂ [n] = x [n] + e[n]

Product quantization error:
v [n] = ay [n − 1]→ v̂ [n] = v [n] + ea[n]

Limit cycles: caused by the nonlinearity by the
quantization of arithmetic operations. When the input is
absent or constant input or sinusoidal input signals are
present, the output is in the form of oscillation
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Quantization problem in Implementation
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Number representations

The two’s complement format

x = Xm(−b0 +
∞∑

i=1

bi2−i)

Xm: an arbitrary scale factor
b0: the sign bit. 0 ≤ x ≤ Xm if b0 = 0; −Xm ≤ x < 0 if
b0 = 1

Fix-point binary numbers

x̂ = QB[x ] = Xm(−b0 +
B∑

i=1

bi2−i) = Xmx̂B

Quantizing a number to B + 1 bits. Quantization error:
e = Qb[x ]− x
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Quantization error

Rounding: −∆/2 < e ≤ ∆/2
Truncating: −∆ < e ≤ 0
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Quantization error (cont’)
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Overflow

When x > Xm
Saturation overflow (Clipping)
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Coefficient quantization - IIR

Effect of coefficient quantization of an IIR digital filter
implemented in direct form (5th-order IIR elliptic
lowpass filter)
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Coefficient quantization - IIR (cont’)

Effect of coefficient quantization of an IIR digital filter
implemented in cascade form (5th-order IIR elliptic
lowpass filter)
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Coefficient quantization - FIR

Effect of coefficient quantization of an FIR digital filter
implemented in direct form (39th-order FIR equiripple
lowpass filter)
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Pole sensitivity of second-order structures
(Product quantization)

The direct form structure exhibits high pole sensitivity
with poles closer to the real axis and low pole sensitivity
with poles closer to z = ±j
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Pole sensitivity of second-order structures
(cont’)

The coupled form structure is more suitable for
implementing any type of second-order transfer
function.
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