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Recap

Background
DSK and Lab
I/O - Sampling and Reconstruction

Sampling: impulse-train vs. zero-order hold
Reconstruction: band-limited interpolation vs.
zero-order hold interpolation vs. higher-order hold
interpolation
Aliasing: the aliasing frequency vs. the folding
frequency
The sampling theorem
The sigma-delta ADC
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Outline

The z-transform
Relationship to FT and Laplace transform
System function
Region of convergence (ROC)
Properties

The inverse z-transform
Useful filters
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Background

All signals are “mixtures” that can be decomposed into
linear combination of some basic signals. There are
two classes of basic signals,

delayed impulses→ time-domain system analysis or
convolution
complex exponentials→ frequency-domain system
analysis

Eigenfunction vs. eigenvalue: A signal for which the
system output is a constant times the input is referred
to as an eigenfunction of the system, and the amplitude
factor is referred to as the system’s eigenvalue.

Complex exponentials (est or zn) are eigenfunctions of
LTI systems. That is, est → H(s)est for CT or
zn → H(z)zn for DT.
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Definition of the z-transform

The z-transform: X (z) =
∑∞

n=−∞ x [n]z−n where
z = rejω

The Laplace transform vs. the z-transform
s = σ + jω, X (s) =

∫∞
−∞ x(t)e−stdt . When s = jω,

X (jω) =
∫∞
−∞ x(t)e−jωtdt , which is the CTFT of x(t).

z = rejω, X (z) =
∑∞

n=−∞ x [n]z−n. When z = ejω,
X (ejω) =

∑∞
n=−∞ x [n]e−jωn which is the DTFT of x [n].
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Issue of convergence

X (ejω) =
∞∑

n=−∞
x [n]e−jωn (1)

|X (ejω)| = |
∞∑

n=−∞
x [n]e−jωn| ≤

∑
n

|x [n]||e−jωn| (2)

=
∑

n

|x [n]| (3)

X (ejω) converges if
∑
|x [n]| <∞, that is, x [n] is

absolutely summable.
X (z) converges if

∑∞
n=∞ |x [n]r−n| <∞
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System function

y [n] = x [n] ∗ h[n]

Y (z) = X (z)H(z)→ H(z) =
Y (z)
X (z)

H(z) is the system function
when system is stable?
when system is causal?
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The z-plane, the pole-zero plot

Sum of exponentials of a sequence results in
z-transforms that are ratios of polynomials in z
Zeros of polynomial: roots of the numerator polynomial
Poles of polynomial: roots of the denominator
polynomial
|z| = 1 (or unit circle) is where the Fourier transform
equals to the z-transform
MATLAB function: zplane.
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Region of convergence

Region of convergence (ROC): the z-transform exists
only for those values of z where X (z) converges.
Observations:

The z-transform is defined by function of z and also the
ROC.
The ROC of X (z) consists of a ring in the z-plane
centered about the origin
There won’t be any poles in the ROC
ROC is bounded by poles or 0 or∞
FT exists only when the ROC includes |z| = 1
Poles and zeros at∞
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Different cases

Finite length sequence: 0 < |z| <∞
Right-sided sequence: x [n] = 0 for n < n1

Rx− < |z| <∞

where Rx− must be the outermost pole in the z-plane
Left-sided sequence: x [n] = 0 for n > n1

0 < |z| < Rx+

where Rx+ is the innermost pole
Two-sided sequence: Rx− < |z| < Rx+ where Rx− and
Rx+ are the two poles that are adjacent on the z-plane.
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Properties of the z-transform

Linearity?
Time-delay property?

What does z−1 indicate?
Unit delay property of z-transforms

x [n − 1]⇐⇒ z−1X (z)

Time delay of n0 samples multiplies the z-transform by
z−n0

x [n − n0]⇐⇒ z−n0X (z)
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Convolution and the z-transform

Convolution in the time domain corresponds to
multiplication in the z-domain

y [n] = h[n] ∗ x [n]⇐⇒ Y (z) = H(z)X (z)

Calculate the output in the z-domain

x [n] = δ[n − 1]− δ[n − 2] + δ[n − 3]− δ[n − 4]
h[n] = δ[n] + 2δ[n − 1] + 3δ[n − 2] + 4δ[n − 3]
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Cascading systems

The system function for a cascade of two LTI systems
is the product of the individual system functions.

h[n] = h1[n] ∗ h2[n]⇐⇒ H(z) = H1(z)H2(z)

Consider a system described by the difference
equations

w [n] = 3x [n]− x [n − 1], y [n] = 2w [n]− w [n − 1]

that represents a cascade of two first-order systems.
How to calculate the output?
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Factoring the z-polynomials

We can factor z-transform polynomials to break down a
large system into smaller modules. The factors of a
high-order H(z) would represent component systems
that make up H(z) in a cascade connection
Decompose H(z) = 1− 2z−1 + 2z−2 − z−3 into
lower-order cascading systems to help understand the
characteristics of the system
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Significance of the zeros of H(z)

The zeros of the system function that lie on the unit
circle correspond to frequencies at which the gain of
the system is zero. Thus, complex sinusoids at those
frequencies are blocked or nulled by the system.



Lecture 4

Roadmap

Definition

Properties

Useful Filters

Inverse z

Significance of the zeros of H(z) (cont’)

Exercise: H(z) = 1− 2z−1 + 2z−2 − z−3. What does
the pole-zero plot indicate? or what kind of input
signals would generate a zero output?
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Application example: eliminate jamming signal in a
radar or communications system or eliminate the 60 Hz
interference from a power line
Exercise: How to remove signal x [n] = cos(ωn)?
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Nulling filters

If we want to eliminate a sinusoidal input signal, we
would have to remove two signals of the form zn

1 + zn
2

x [n] = cos(ωn) =
1
2

ejωn +
1
2

e−jωn

with two cascading first-order FIR filters. The
second-order FIR filter will have two zeros at z1 = ejω

and z2 = e−jω.
To eliminate the first component in x [n], we need a filter
with system function H1(z) = 1− z1z−1, and for the
second component, a system function of
H2(z) = 1− z2z−1, such that

H(z) = H1(z)H2(z) = (1− z1z−1)(1− z2z−1)
= 1− 2 cosωz−1 + z−2
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Revisit - the pole-zero plot vs. the frequency
response
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H(z) = 1 − 2z−1 + 2z−2 − z−3
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H(z) = 1 − 2cos(w)z−1 + z−2
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The L-point running sum filter

y [n] =
L−1∑
k=0

x [n − k ],H(z) =
L−1∑
k=0

z−k =
1− z−L

1− z−1

Exercise: What are the roots?
A 10-point running-sum filter L = 10
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10−point running−sum
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bandpass at k=2
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Why only 9 poles?
Why missing a zero at z = 1?
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Complex bandpass filters

We can control the frequency response of an FIR filter
by placing its zeros on the unit circle
Move the passband to a new location with a specified
frequency, e.g., ω = 2πk0/L

H(z) =
L−1∏

k=0,k 6=k0

(1− ej2πk/Lz−1)

the index k0 denotes the one omitted root at z = ej2πk0/L

What would the pole-zero plot look like?
What would the frequency response look like?
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Complex bandpass filters (cont’)
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10−point running−sum
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bandpass at k=2
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Complex bandpass filters - the filter coefficient?

A rotation of the zeros by the angle, 2πk0/L, is
equivalent of shifting the frequency response along the
ω-axis by the amount of the rotation.
Consider H(z) = G(z/r)

The effect of replacing z in G(z) with z/r is to multiply
the roots of G(z) by r and make these the roots of H(z).
When r is a complex exponential, this will rotate the
complex number through the angle specified.

G(z) =
L−1∑
k=0

z−k , r = ej2πk0/L

H(z) = G(z/r) = G(ze−j2πk0/L) =
∑L−1

k=0 z−k ej2πk0k/L

bk = ej2πk0k/L for k = 0,1, · · · ,L− 1
H(ejω) =

∑L−1
k=0 ej2πk0k/Le−jωk
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Bandpass filters with real coefficients

bk = <{ej2πk0k/L} = cos(2πk0k/L)

H(z) =
L−1∑
k=0

(cos(2πk0k/L))z−k = H1(z) + H2(z)
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bandpass with real coefficients at k=2
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Bandpass filters with real coefficients (cont’)

H(z) =
∑L−1

k=0(
1
2ej2πk0k/Lz−k + 1

2e−j2πk0k/Lz−k )

= 1
2

1−z−L

1−pz−1 + 1
2

1−z−L

1−p∗z−1

= 1
2

zL−1
zL−1(z−p) +

1
2

zL−1
zL−1(z−p∗)

= 1
2
(zL−1)(z−p∗)+(zL−1)(z−p)

zL−1(z−p)(z−p∗)

where p = ej2πk0/L
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The inverse z-transform

Formal method - Contour Integration

x [n] =
1

2πj

∮
C

X (z)zn−1dz

where C represents a closed contour within the ROC of
the z-transform.
Informal methods

Inspection method
Power series
Partial fraction expansion
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Inspection method

anu[n]↔ 1
1− az−1 , for |z| > |a|

−anu[−n − 1]↔ 1
1− az−1 , for |z| < |a|
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Power series

The z-transform is a power series in z.
X (z) =

∑∞
n=−∞ x [n]zn

Examples:
1 X (z) = z2(1− 1

2 z−1)(1 + z−1)(1− z−1)

2 X (z) = log(1 + az−1), for |z| > |a|
3 X (z) = 1

1−az−1

4 X (z) = 1
1−1.5z−1+0.5z−2 for (a) ROC: |z| > 1, (b) ROC:

|z| < 0.5
Note: If x [n] is a causal sequence, we should seek a power
series expansion in negative power of z, then the component
of the with the highest order of z−1 should be at the
rightmost position of the denominator; If x [n] is not a causal
sequence, we should seek a power series expansion in
positive power of z, then we should reverse the order of
denominator and the the component with the highest order
of z−1 should be at the leftmost position.
Drawbacks: No closed-form expression



Lecture 4

Roadmap

Definition

Properties

Useful Filters

Inverse z

Partial fraction expansion

Extension to the inspection method
F (x) = P(x)

Q(x) =
∑N

k=1
Rk

x−xk
where Rk is the residue

The expansion is true with the following two conditions
Order of P(x) is less than the order of Q(x)
No multiple-order roots

Rr = F (x)(x − xr )|(x=xr )
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Examples

1 X (z) = 1
(1− 1

2 z−1)(1− 1
4 z−1)

for |z| > 1
2

2 X (z) = 1+3z−1+ 11
6 z−2+ 1

3 z−3

1+ 5
6 z−1+ 1

6 z−2 . Note that X (z) is an

improper rational function where the order the
numerator is larger than that of the denominator. Use
long division with the two polynomials written in
“reverse order” to convert it to the sum of a polynomial
and a proper rational function.
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Examples (cont’)

3 X (z) = 1+z−1

1−z−1+0.5z−2 . Note that the two residues are
actually complex conjugate pairs. This is a
consequence of the fact that the poles are complex
conjugate pairs. That is, complex-conjugate poles
result in complex-conjugate coefficients in the partial
fraction expansion. For example, suppose
X (z) = A1

1−p1z−1 + A2
1−p2z−1 where A1 = A∗2 and p1 = p∗2,

then

x [n] = A1(p1)
nu[n] + A2(p2)

nu[n] (4)

= [|A1|ej∠A1(|p1|ej∠p1)n + |A2|ej∠A2(|p2|ej∠p2)n]u[n]
(5)

= |A1||p1|n cos(∠A1 + n∠p1)u[n] (6)
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Examples (cont’)

4 X (z) = 1
(1+z−1)(1−z−1)2 . Note that X (z) has multiple

order poles. So you should find the coefficients for
X (z) = A1

1+z−1 + A2
1−z−1 + A3

(1−z−1)2
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