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m DSK and Lab
m |/O - Sampling and Reconstruction
m Sampling: impulse-train vs. zero-order hold
m Reconstruction: band-limited interpolation vs.
zero-order hold interpolation vs. higher-order hold
interpolation
m Aliasing: the aliasing frequency vs. the folding
frequency
m The sampling theorem
m The sigma-delta ADC



Outline
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Roadmap

m The z-transform

m Relationship to FT and Laplace transform
m System function

m Region of convergence (ROC)

m Properties

m The inverse z-transform
m Useful filters



Background
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m All signals are “mixtures” that can be decomposed into
linear combination of some basic signals. There are
Definition two classes of basic signals,
m delayed impulses — time-domain system analysis or
convolution
m complex exponentials — frequency-domain system
analysis
m Eigenfunction vs. eigenvalue: A signal for which the
system output is a constant times the input is referred
to as an eigenfunction of the system, and the amplitude
factor is referred to as the system’s eigenvalue.
m Complex exponentials (et or z") are eigenfunctions of
LTI systems. That is, 5! — H(s)e®! for CT or
z" — H(z)z" for DT.



Definition of the z-transform
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Definition

m The z-transform: X(z) =Y 72 x[n]z~" where
z=re
m The Laplace transform vs. the z-transform
B s=o0+jw, X(s)= [T x(t)e~S'dt. When s = juw,
X(jw) = [7_ x(t)e~/=!dt, which is the CTFT of x(t).
mz=rev X(2) =37 _ x[n]z~". When z = &,
X(e*) =30 _ x[nle”" which is the DTFT of x[n].




Issue of convergence
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[e.9]

Definition X(e/“): Z x[n]e‘j“” (1)

nN=—o0

X ()] = | Z x[n]e 11| <Z|X[n]||e )

nN=—o0

= |x[n]] (3)

m X(e) converges if 3" |x[n]| < oo, that is, x[n] is
absolutely summable.
m X(z) converges if > 2 |x[n]r~" < oo




System function
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Definition

ylnl = x[n] = hin]
Y(z) =X(2)H(z) = H(z) = =
m H(z) is the system function

m when system is stable?
m when system is causal?



The z-plane, the pole-zero plot
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m Sum of exponentials of a sequence results in
z-transforms that are ratios of polynomials in z

m Zeros of polynomial: roots of the numerator polynomial

m Poles of polynomial: roots of the denominator
polynomial

m |z| =1 (or unit circle) is where the Fourier transform
equals to the z-transform

m MATLAB function: zplane.

Definition




Region of convergence
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m Region of convergence (ROC): the z-transform exists
only for those values of z where X(z) converges.
m Observations:

m The z-transform is defined by function of z and also the
ROC.

m The ROC of X(z) consists of a ring in the z-plane
centered about the origin

m There won’t be any poles in the ROC

m ROC is bounded by poles or 0 or

m FT exists only when the ROC includes |z| = 1

m Poles and zeros at co

Definition



Different cases

Lecture 4

m Finite length sequence: 0 < |z]| <
m Right-sided sequence: x[n] = 0 for n < ny

Definition

Rx_ < |z| < >

where Ry_ must be the outermost pole in the z-plane
m Left-sided sequence: x[n] = 0 for n > ny

0 < |z| < Rx+

where Ry+ is the innermost pole

m Two-sided sequence: Rx_ < |z| < Rx4+ where Rx_ and
Ry are the two poles that are adjacent on the z-plane.



Properties of the z-transform
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m Linearity?
Properties [ | Time'delay proper’[y?

m What does z~ ' indicate?
m Unit delay property of z-transforms

x[n—1] <= z7'X(2)
m Time delay of ny samples multiplies the z-transform by

z~ "o
x[n—ng] <= z7™ X(2)



Convolution and the z-transform
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m Convolution in the time domain corresponds to
Properties multiplication in the z-domain

y[n] = h[n] x x[n] <= Y(z) = H(2)X(2)
m Calculate the output in the z-domain

x[n] =0[n—1] = d[n—2]+[n—3] —d[n— 4]
hln] = 6[n] 4+ 26[n — 1] + 36[n — 2] 4+ 46[n — 3]



Cascading systems
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m The system function for a cascade of two LTI systems
is the product of the individual system functions.

Properties

h[n] = hy[n] * ho[n] <= H(z) = Hi(2)H2(2)

m Consider a system described by the difference
equations

w[n] = 3x[n] — x[n—1],y[n] = 2w[n] — w[n — 1]

that represents a cascade of two first-order systems.
How to calculate the output?



Factoring the z-polynomials
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m We can factor z-transform polynomials to break down a
large system into smaller modules. The factors of a
high-order H(z) would represent component systems
that make up H(z) in a cascade connection

m Decompose H(z) =1—-2z""+2z72 — z3into
lower-order cascading systems to help understand the
characteristics of the system

Properties



Significance of the zeros of H(z)
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Useful Filters m The zeros of the system function that lie on the unit
circle correspond to frequencies at which the gain of
the system is zero. Thus, complex sinusoids at those
frequencies are blocked or nulled by the system.



Significance of the zeros of H(z) (cont’)
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m Exercise: H(z) =1—2z"' +2z72 — z=3. What does
the pole-zero plot indicate? or what kind of input
signals would generate a zero output?
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m Application example: eliminate jamming signal in a
radar or communications system or eliminate the 60 Hz
interference from a power line

m Exercise: How to remove signal x[n] = cos(wn)?



Nulling filters
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m |f we want to eliminate a sinusoidal input signal, we

would have to remove two signals of the form z{ + z7
x[n] = cos(wn) = fe’“” ; —Jwn

with two cascading first-order FIR filters. The

second-order FIR filter will have two zeros at z; = &%

and z, = e /v,

m To eliminate the first component in x[n], we need a filter
with system function H;(z) = 1 — z;z~1, and for the
second component, a system function of
Hp(z) =1 — 2z~ 1, such that

Useful Filters

H(z) = Hi(2)H(2)=(1—-2z127")(1 —zz7")
= 1-2coswz '+2z2



Reuvisit - the pole-zero plot vs. the frequency
response
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H@z)=1-22t+272-73
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The L-point running sum filter
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L1 L1

yinl =S xin— KL, H@z) =Yz = -z

1—z1
k=0 k=0

m Exercise: What are the roots?
m A 10-point running-sum filter L = 10

Useful Filters

10-point running-sum
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m Why only 9 poles?
m Why missing a zeroat z =17



Complex bandpass filters
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m We can control the frequency response of an FIR filter
by placing its zeros on the unit circle

m Move the passband to a new location with a specified

Useful Filters frequency, e.g., w = 2mky /L
L1 ]
k=0,k+£kq

m the index k; denotes the one omitted root at z = e27k/L
m What would the pole-zero plot look like?
m What would the frequency response look like?
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Useful Filters

Complex bandpass filters (cont’)
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Complex bandpass filters - the filter coefficient?
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m A rotation of the zeros by the angle, 27ky /L, is
equivalent of shifting the frequency response along the
w-axis by the amount of the rotation.

m Consider H(z) = G(z/r)

T, m The effect of replacing z in G(z) with z/r is to multiply

the roots of G(z) by r and make these the roots of H(z).

When r is a complex exponential, this will rotate the

complex number through the angle specified.

~

—1
G(z)=) z K r=¢?"/t
0

>
Il

H(z) = G(z/r) = G(ze?ho/L) = Zi;:) 7~k gi2mhok/L

m by = e ok/Lfor k =0,1,--- L —1
- H(e/'w) _ Zi;é gli2mkok /L g—jwk



Bandpass filters with real coefficients
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m by = R{ePHk/L} = cos(2nkok/L)

L—1
H(z) = (cos(2mkok/L))z ™ = Hy(2) + Ha(2)
k=0

Useful Filters

bandpass with real coefficients at k=2
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Bandpass filters with real coefficients (cont’)
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= K—

H(z) = L—g(%e/'Zwkok/Lz—k + %e—j27rkok/LZ—k)
11—zt 11—zt

Useful Filters

21—pz-1 + 21-pz—T
_1_ zt1 +1 zL—1
-2 2zL

1

2

zL-1 z—p _1(pr*)
2t -1)(z=p*)+(z"=1)(z—p)
b1 (z—p)(z—p*)

where p = e/?7ho/L



The inverse z-transform
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m Formal method - Contour Integration

x[n] = 2;/ %CX(z)z’Hdz

where C represents a closed contour within the ROC of
the z-transform.
m Informal methods

m Inspection method
m Power series
m Partial fraction expansion

Inverse z



Inspection method
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1
auln] < p— for |z| > |a|

Inverse z

11—

—-au[-n—1] + 7, for |z < |a]

v
1—az-



Power series
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The z-transform is a power series in z.
X(2) = 3 ns o XIn)2"

m Examples:

B X(z)=22(1 -3z )(1+z")(1-2z7)
B X(z) =log(1+az "), for |z| > |a|

X(z) = H;j
Inverse z X(Z) = ‘I—‘ISZJW fOI’( ROC |Z| > 1 ROC
|z < 0.5

m Note: If x[n] is a causal sequence, we should seek a power
series expansion in negative power of z, then the component
of the with the highest order of z=! should be at the
rightmost position of the denominator; If x[n] is not a causal
sequence, we should seek a power series expansion in
positive power of z, then we should reverse the order of
denominator and the the component with the highest order
of z~1 should be at the leftmost position.

m Drawbacks: No closed-form expression



Partial fraction expansion
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m Extension to the inspection method

F(X) = o = ko1 52 where Ry is the residue

Inverse z

m The expansion is true with the following two conditions

m Order of P(x) is less than the order of Q(x)
m No multiple-order roots

Rr = F(X)(X — Xr)|(x=x,)



Examples
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X(z) = for |z] > 1

1
(1—%2*1)(1—%2*‘)

143z 141,24 1,-3 .
X(z) = 1+§Zf1+1zj . Note that X(z) is an
Inverse z 6 6

improper rational function where the order the
numerator is /arger than that of the denominator. Use
long division with the two polynomials written in
“reverse order” to convert it to the sum of a polynomial
and a proper rational function.




Examples (cont’)
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A X(z)= %. Note that the two residues are
actually complex conjugate pairs. This is a
consequence of the fact that the poles are complex
conjugate pairs. That is, complex-conjugate poles

result in complex-conjugate coefficients in the partial

Inverse z fraction expansmn For example, suppose
X(2) = - - 2_1 + 1 ;‘222_1 where Ay = A5 and py = p3,
then
x[n] = Aq(p1)"u[n] + Ax(p2)"uln] (4)

= [| A& (|p1|€P)" + | Axl€/“"(|p2|€/“P2)"u[ ]
(5)
= |Ai1]lp1|" cos(£Ar + nZpy)uln] (6)



Examples (cont’)
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X(z) = Mﬁ Note that X(z) has multiple
order poles So you should fmd the coefficients for
X(Z) 1+Z ] + + ( Z 1)2

Inverse z
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