
Lecture 8

Recap

IIR

Impulse
Invariance

Bilinear Trans.

Example

Real-Time Digital Signal Processing
Lecture 8 - Infinite Impulse Response Filter

- IIR

Electrical Engineering and Computer Science
University of Tennessee, Knoxville

March 3, 2015



Lecture 8

Recap

IIR

Impulse
Invariance

Bilinear Trans.

Example

Overview

1 Recap

2 IIR

3 Impulse Invariance

4 Bilinear Trans.

5 Example



Lecture 8

Recap

IIR

Impulse
Invariance

Bilinear Trans.

Example

Recap

Week 1: Background
Week 2: DSK and Lab
Week 3: I/O - Sampling and Reconstruction
Week 4: The z-transform and Design Structure
Week 5-6: The FIR filter with linear phase
Week 7-8: FIR filter design techniques
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Review - FIR filter with linear phase

Linear-phase FIR filter
Generalized linear phase, ^H(ejω) = β − ωα,0 < ω < π
Group delay, α
Phase shift, β

Four types of causal FIR filters with generalized linear
phase, h[n] = ±h[M − n],n = 0, · · · ,M

Definition and derivation (the type of symmetry, with or
w/o phase shift (β), integer or non-integer group delay
(α), even or odd number of filter coefficients)
Design structure (halved # of multiplication)
Zero patterns (the set of four reciprocal zeros)
z = ±1 being zero?

When to use what?
Constraints on the zeros
Integer/non-integer group delay
Phase shift
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Review - FIR filter design techniques

Windows - Kaiser
Why using window?
The two essential parameters: width of the main lobe
and height of the side lobe
Pros and cons of windowing techniques

Optimal methods - Park-McClellan equiripple
How does PM overcome issues with Kaiser window?
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Review - Practical frequency-selective filters

Approximate ideal filters by a rational function or LCDE

Factors that affect the filter performance
the maximum tolerable passband ripple, 20 log10 δp
the maximum tolerable stopband ripple, 20 log10 δs
the passband edge frequency ωp
the stopband edge frequency ωs
M and N: order of the LCDE
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Design techniques for IIR filters

Analytical — closed-form solution of transfer function
Continuous-time→ Discrete-time
Algorithmic
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General guidelines for CT->DT

continuous → discrete
Ha(s) → H(z)
ha(t) → h[n]

jΩ-axis (s-plane)→ unit circle (z-plane)
if Ha(s) is stable→ H(z) is stable
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Different CT->DT approaches

Mapping differentials to differences
z = 1 + sT
the jΩ-axis is NOT mapped to the unit circle
stable poles might not be mapped to inside the unit
circle

Impulse invariance
Bilinear transformation
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Impulse invariance

h[n] = Tdhc(nTd ) (1)

H(ejω) =
∞∑

k=−∞
Hc[

jω
Td

+
j2πk
Td

] (2)

Preserve good time-domain characteristics
Linear scaling of frequency axis, ω = ΩT
Existence of aliasing
Impulse invariance doesn’t imply step invariance
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Impulse invariance (cont’)

Hc(s) =
N∑

k=1

Ak

s − sk
→ H(z) =

N∑
k=1

TdAk

1− esk Td z−1

Mapping poles

s = sk → z = esk Td

Preserve residues
s = jΩ→ z = ejΩTd = ejω, the unit circle
if sk is stable, i.e., region of sk is less than 0,
→ |zk | < 1→ digital filter is stable
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Impulse invariance - An example

Find the system function of the digital filter mapped
from the analog filter with a system function
Hc(s) = s+a

(s+a)2+b2 . Compare magnitude of the
frequency response and pole-zero distributions in the s-
and z-plane

Sol: H(z) = 1−(e−aT cos bT )z−1

(1−e−(a+jb)T z−1)(1−e−(a−jb)T z−1)

Note that zeros are not mapped. Also note that |Hs(jΩ)|
is not periodic but |H(ejω)| is.
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Bilinear transformation

Mapping from s-plane to z-plane by relating s and z
according to a bilinear transformation. Hc(s)→ H(z)

s =
2
T

(
1− z−1

1 + z−1 ), or z =
1 + sT

2

1− sT
2

Two guidelines
Preserves the frequency characteristics? I.e., maps the
jΩ-axis to the unit circle?
Stable analog filter mapped to stable digital filter?

Important properties of bilinear transformation
Left-side of the s-plane→ interior of the unit circle;
Right-side of the s-plane→ exterior of the unit circle.
Therefore, stable analog filters→ stable digital filters.
The jΩ-axis gets mapped exactly once around the unit
circle.

No aliasing
The jΩ-axis is infinitely long but the unit circle isn’t →
nonlinear distortion of the frequency axis
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Blinear transformation - Mappings
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Bilinear transformation - How to tolerate
distortions?

Prewarp the digital cutoff frequency to an analog cutoff
frequency through Ω = 2

T tan ω
2

Better used to approximate piecewise constant filters which
will be mapped as constant as well
Can’t be used to obtain digital lowpass filter with linear-phase

Avoid aliasing at the price of distortion of the frequency axis
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The class of analog filters

Butterworth filter
|Hc(jΩ)|2 = 1

1+( jΩ
jΩc

)2N

Note about the butterworth circle with radius Ωc
Ωc is also called the 3dB-cutoff frequency when
−10log10|Hc(jΩ)|2|Ω=Ωc ≈ 3
Monotonic function in both passband and stopband
Matlab functions: buttord, butter

Chebyshev filter
Type I Chebyshev has an equiripple freq response in
the passband and varies monotonicaly in the stopband,
|Hc(jΩ)|2 = 1

1+ε2T 2
N (Ω/Ωp)

Type II Chebyshev is monotonic in the passband and
equiripple in the stopband, |Hc(jΩ)|2 = 1

1+ε2[
TN (Ωs/Ωp )

TN (Ωs/Ω) ]2

Matlab functions: cheb1ord, cheby1, cheb2ord,
cheby2
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The class of analog filters (cont’d)

Elliptic filter
|Hc(jΩ)2 = 1

1+ε2R2
N (Ω/Ωp)

where RN(Ω) is a rational
function of order N satisfying the perperty
RN(1/Ω) = 1/RN(Ω) with the roots of its numerator
lying within the interval 0 < Ω < 1 and the roots of its
denominator lying in the interval 1 < Ω <∞
Equiripple in both the passband and the stopband
Matlab functions: ellipord, ellip
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Example

Specs of the discrete-time filter: passband gain
between 0dB and -1dB, and stopband attenuation of at
least -15dB.

1− δp ≥ −1dB, δs ≤ −15dB

20 log10 |H(ej0.2π)| ≥ −1→ |H(ej0.2π)| ≥ 10−0.05 = 0.89130 ≤ |ω| ≤ 0.2π
(3)

20 log10 |H(ej0.3π)| ≤ −15→ |H(ej0.3π)| ≤ 10−0.75 = 0.17780.3π ≤ |ω| ≤ π
(4)
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Example (cont’d)

Impulse invariance
Round up to the next integer of N
Due to aliasing problem, meet the passband exactly
with exceeded stopband

1 + (
j 0.2π

T
jΩc

)2N = 100.1 (5)

1 + (
j 0.3π

T
jΩc

)2N = 101.5 (6)

Bilinear transformation
Round up to the next integer of N
By convention, choose to meet the stopband exactly
with exceeded passband

1 + (
j2 tan(0.1π)

jΩc
)2N = 100.1 (7)

1 + (
j2 tan(0.15π)

jΩc
)2N = 101.5 (8)
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