Lecture 9

Review Recap FFT

DIT

DIF

Real-Time Digital Signal Processing Lecture 9 - Fast Fourier Transform

Electrical Engineering and Computer Science University of Tennessee, Knoxville

March 10, 2015

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

	Overview		
Lecture 9			
Review Recap	1 Review		
FT	2 Recap		
DIF-	3 FFT		
	4 DIT		
	5 DIF		

Recap

Lecture 9

Review

- Recap
- FFT
- DIT
- DIF

- Week 1: Background
- Week 2: DSK and Lab
- Week 3: I/O Sampling and Reconstruction
- Week 4: The z-transform and Design Structure

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Week 5-6: The FIR filter with linear phase
- Week 7-8: FIR filter design techniques
- Week 9: Fast Fourier Transform

Review - FIR filter with linear phase

Lecture 9

- Review
- Recap
- FFT
- DIT
- DIF

- Linear-phase FIR filter
 - Generalized linear phase, $\triangleleft H(e^{j\omega}) = \beta \omega \alpha, 0 < \omega < \pi$
 - Group delay, α
 - Phase shift, β
- Four types of causal FIR filters with generalized linear phase, $h[n] = \pm h[M n], n = 0, \dots, M$
 - Definition and derivation (the type of symmetry, with or w/o phase shift (β), integer or non-integer group delay (α), even or odd number of filter coefficients)
 - Design structure (halved # of multiplication)
 - Zero patterns (the set of four reciprocal zeros)
 - $z = \pm 1$ being zero?
- When to use what?
 - Constraints on the zeros
 - Integer/non-integer group delay
 - Phase shift

Review - FIR filter design techniques

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

	Review - IIR
Lecture 9	
Recap	■ CT -> DT
	Impuse invariance
DIT	• $\omega = \Omega T$
DIF	preserve good time-domain characteristics
	linear scale of the frequency axis + aliasing
	Bilinear transformation
	• $s = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$ or $\Omega = \frac{2}{T} \tan \frac{\omega}{2}$
	distortion in frequency characteristics
	no aliasing

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Review - DFT

Lecture 9

Review

- Recap
- FFT
- DIT
- DIF

DTFT

- x[n] needs to be either absolutely summable or square summable
- $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n},$ $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$

DFS: sampled version of $X(e^{j\omega})$ at frequencies $w_k = 2\pi k/N$

- $\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn}, \, \tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$ where $W_N = e^{-j(2\pi/N)}$.
- DFT: one period of X̃[k]
 - $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, 0 \le k \le N-1,$ $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, 0 \le n \le N-1$ ■ $\tilde{x}[n] = x[((n))_N], \tilde{X}[k] = X[((k))_N]$

Discrete Fourier Transform (DFT) - Direct computation

Lecture 9

Review

Recap

FFT

DIT

DIF

- $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, 0 \le k \le N-1,$ $x[n] = \frac{1}{N!} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, 0 \le n \le N-1$
- $x[n]W_N^{kn}$ results in 1 complex multiplication
- $\sum_{n=0}^{N-1} x[n] W_N^{kn}$ results in *N* complex multiplications and N-1 complex additions for fixed *k*

- With $k = 0, \dots, N 1$, there are N^2 complex multiplications and N(N 1) complex additions
- Therefore, the complexity of direct computation is O(N²)

Rationale of FFT

Lecture 9

- Review
- Reca
- FFT
- DIT
- DIF

By decomposing the original sequence into subsequences, we can reduce the *N*-point DFT to *M*-point DFT where *M* ≪ *N*, such that the computational complexity is *O*(*N* log *N*) instead of *O*(*N*²)

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Different ways to decompose a sequence
 - Decimation-in-time FFT
 - Decimation-in-frequency FFT

Decimation-in-time FFT

Lecture 9

Review Recap FFT

DIT

DIF

Decompose the sequence into a set of even number points and odd number points

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$
(1)
= $\sum_{n \text{ even}} x[n] W_N^{nk} + \sum_{n \text{ odd}} x[n] W_N^{nk}$ (2)
= $\sum_{r=0}^{N/2-1} x[2r] W_N^{2rk} + \sum_{r=0}^{N/2-1} x[2r+1] W_N^{(2r+1)k}$ (3)
= $\sum_{r=0}^{N/2-1} x[2r] W_N^{rk} + W_N^k \sum_{r=0}^{N/2-1} x[2r+1] W_{\frac{N}{2}}^{(rk}$ (4)
= $G[k] + W_N^k H[k]$ (5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

DIT FFT (cont'd)

Lecture 9

- Review Recap
- FFT
- DIT
- DIF

The above operations change from an *N*-point DFT to $\frac{N}{2}$ -point DFT. The computational complexity of *G*[*k*] and *H*[*k*] is $O((\frac{N}{2})^2$, so the complexity of the entire process is $2(\frac{N}{2})^2 + N = N + \frac{N^2}{2} < N^2$

(日) (日) (日) (日) (日) (日) (日)

Illustration - Butterfly computation

Lecture 9

Review Recap FFT DIT

DIF

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Computational complexity

Lecture 9 Review Recap FT DIT DIF $2\frac{N}{2}$ -point DFT $4\frac{N}{4}$ -point DFT $8\frac{N}{8}$ -point DFT $8(\frac{N}{8})^2 + N + N$ $8(\frac{N}{8})^2 + N + N + N$ $(\frac{N}{4})^2 \rightarrow 2(\frac{N}{4})^2 + \frac{N}{4}$ $(\frac{N}{4})^2 \rightarrow 2(\frac{N}{8})^2 + \frac{N}{4}$ Eventually, when it comes down to just 2-point DFT, there

Eventually, when it comes down to just 2-point DFT, there would be \log_2^N number of *N*'s summing up together. Therefore, the complexity of FFT is $O(N \log_2^N)$

(日) (日) (日) (日) (日) (日) (日)

In-place computation

Lecture 9

Review Recap FFT

DIT

DIF

Each level of output overwrites the original memory.
I.e., store results back to the original memory location

(ロ) (同) (三) (三) (三) (三) (○) (○)

Bit-reversed order - input sequence got rearranged

x[111]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modifications 1 - from inside BF to outside BF

$$W_N^{(r+\frac{N}{2})} = W_N^r W_N^{\frac{N}{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Modifications 2 - rearrange input order (output bit-reversed order)

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Modifications 3 - Input in order and output in order

Lecture 9

- Distorted butterfly
- Not in-place computation

FFT DIT

DIF

Decimation-in-frequency

Lecture 9

- Revie
- ____
- ...
- DIT
- DIF

Decompose the sequence into the first half and the second half

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$
(6)
= $\sum_{n=0}^{\frac{N}{2}-1} x[n] W_N^{nk} + \sum_{n=\frac{N}{2}}^{N-1} x[n] W_N^{nk}$ (7)
= $\sum_{n=0}^{\frac{N}{2}-1} [x[n] + (-1)^k x[n + \frac{N}{2}]] W_N^{nk}$ (8)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

DIF - cont'd

Lecture 9

Reviev Recap

FEI

DIT

DIF

■ When *k* is even, $x[2r] = \sum_{n=0}^{\frac{N}{2}-1} [x[n] + x[n + \frac{N}{2}]] W_N^{2rn}$, i.e., $x[2r] = \sum_{n=0}^{\frac{N}{2}-1} g[n] W_{\frac{N}{2}}^{rn}$, becoming an $\frac{N}{2}$ -point DFT ■ When *k* is odd, $X[2r] = \sum_{n=0}^{\frac{N}{2}-1} [x[n] + x[n + \frac{N}{2}]] W_N^{2rn}$, i.e., $X[2r+1] = \sum_{n=0}^{\frac{N}{2}-1} [h[n] W_N^n] W_{\frac{N}{2}}^{rn}$, where $h[n] = x[n] - x[n + \frac{N}{2}]$, again becoming an $\frac{N}{2}$ -point DFT

くしゃ 人間 そう キャット マックタイ

DIF - flow graph

 Compared to DIT, the multiplication occurs after the butterfly while DIT occurs before the butterfly

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで