Real-Time Digital Signal Processing
Lecture 9 - Fast Fourier Transform

Electrical Engineering and Computer Science
University of Tennessee, Knoxville

March 10, 2015



Overview

Lecture 9

Review
Recap
FFT

DIT

DIF



Lecture 9

m Week 1: Background
m Week 2: DSK and Lab

m Week 3: I/0O - Sampling and Reconstruction

m Week 4: The z-transform and Design Structure
m Week 5-6: The FIR filter with linear phase

m Week 7-8: FIR filter design techniques

m Week 9: Fast Fourier Transform



Review - FIR filter with linear phase
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m Linear-phase FIR filter
m Generalized linear phase, <H(e) = 8 —wa,0 <w < 7

m Group delay, «
m Phase shift, 8

m Four types of causal FIR filters with generalized linear
phase, h[n] = +th[M —n],n=10,--- M
m Definition and derivation (the type of symmetry, with or
w/o phase shift (3), integer or non-integer group delay
(c), even or odd number of filter coefficients)
m Design structure (halved # of multiplication)
m Zero patterns (the set of four reciprocal zeros)
m z = +1 being zero?
m When to use what?

m Constraints on the zeros
m Integer/non-integer group delay
m Phase shift



Review - FIR filter design techniques
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m Windows - Kaiser
m Why using window?
m The two essential parameters: width of the main lobe
and height of the side lobe
m Pros and cons of windowing techniques
m Optimal methods - Park-McClellan equiripple
m How does PM overcome issues with Kaiser window?




Review - |IR
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m CT->DT

m Impuse invariance

mw=QT

B preserve good time-domain characteristics

B linear scale of the frequency axis + aliasing
m Bilinear transformation

ms=2 ‘;j::)orQ: 2tany

m distortion in frequency characteristics

H no aliasing




Review - DFT
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m DTFT
B x[n] needs to be either absolutely summable or square
summable '
m X(e) =32 x[njekn,
x[n] =2 [T X(e“)e dw
m DFS: sampled version of X(&/) at frequencies wy = 27k /N
m X[k] = 200 XMWk, X[n) = & SN X[K| Wy " where
Wy = e—i@m/N),
m DFT: one period of X[k]
m X[k =SV I x[nWE 0 <k<N-1,
x[n) = % Shse XKW 0 <n< N —1
m X[n] = x[((nm)n], X[K] = X[((k))n]



Discrete Fourier Transform (DFT) - Direct
computation
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m X[k] = SN x[nWEP 0 <k <N -1,
x[n] = 3 k20 X[KIWR'".0 <n < N -1

m x[n]WE results in 1 complex multiplication

m >N x[n] W results in N complex multiplications and
N — 1 complex additions for fixed k

m Withk=0,---,N — 1, there are N?> complex

multiplications and N(N — 1) complex additions

m Therefore, the complexity of direct computation is
O(N?)




Rationale of FFT
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m By decomposing the original sequence into
subsequences, we can reduce the N-point DFT to
M-point DFT where M < N, such that the
computational complexity is O(N log N) instead of
O(N?)

m Different ways to decompose a sequence

m Decimation-in-time FFT

m Decimation-in-frequency FFT



Decimation-in-time FFT
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m Decompose the sequence into a set of even number
points and odd number points

N—-1
X[kl = x[nWgf (1)

n=0

= > x[nWF+ ) x[n Wik 2)
neven n odd
N/2—1 N/2-1

= N xRAWE* + 3" xer + 1w (3)
r=0 r=0
N/2—1 N/2-1

= 3 xrwE+ W ST xier+ 1wy (@)
r=0 z r=0 z

= GIK] + WHIK] (5)



DIT FFT (contd)
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m The above operations change from an N-point DFT to
~-point DFT. The computational complexity of G[k] and
Hlk] is O((%)Z, so the complexity of the entire process

is2(¥)2+ N=N+ 2% < N2



lllustration - Butterfly computation
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Computational complexity
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N-point DFT | N2

2N-point DFT | 2(N)2 + N (N2 2(Ny2 4
4N-point DFT | 4(N)2 + N+ N (N2 5 o(Ny2 4 N
8%-point DFT | 8(§)2 + N+ N+ N | (§)2 — 2(%)2 + 4

Eventually, when it comes down to just 2-point DFT, there
would be Iog’z\’ number of N’'s summing up together.
Therefore, the complexity of FFT is O(N log)



In-place computation

Lecture 9

m Each level of output overwrites the original memory.
l.e., store results back to the original memory location



Bit-reversed order - input sequence got
rearranged
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Modifications 1 - from inside BF to outside BF
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Modifications 2 - rearrange input order (output
bit-reversed order)
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Modifications 3 - Input in order and output in

order

m Distorted butterfly
m Not in-place computation




Decimation-in-frequency
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m Decompose the sequence into the first half and the
second half

N—1
X[k = x[nlwif (6)
n=0
51 N—1
= > XMW+ > x[nwgf (7)
n=0 n=N

= Z[X[”] +(=1)"x[n + *]] (8)



DIF - cont’d
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N_
m When Kk is even, x[2r] = ,§:01 [x[n] + x[n+ J]IW3™,
i.e., x[2r] = 3;01 a[n] W&”, becoming an §-point DFT
N_
= When kis odd, X[2r] = 3. o X[+ x[n+ Y wam,

e, X[2r+1] = ZZ 0 [h[n] Wyl W{,”, where

h[n] = x[n] — x[n+ J], again becommg an Y-point DFT



DIF - flow graph
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/

m Compared to DIT, the multiplication occurs after the butterfly
while DIT occurs before the butterfly
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