
Lecture 9

Review

Recap

FFT

DIT

DIF

Real-Time Digital Signal Processing
Lecture 9 - Fast Fourier Transform

Electrical Engineering and Computer Science
University of Tennessee, Knoxville

March 10, 2015

Lecture 9

Review

Recap

FFT

DIT

DIF

Overview

1 Review

2 Recap

3 FFT

4 DIT

5 DIF

Lecture 9

Review

Recap

FFT

DIT

DIF

Recap

Week 1: Background
Week 2: DSK and Lab
Week 3: I/O - Sampling and Reconstruction
Week 4: The z-transform and Design Structure
Week 5-6: The FIR filter with linear phase
Week 7-8: FIR filter design techniques
Week 9: Fast Fourier Transform

Lecture 9

Review

Recap

FFT

DIT

DIF

Review - FIR filter with linear phase

Linear-phase FIR filter
Generalized linear phase, ^H(ejω) = β − ωα,0 < ω < π
Group delay, α
Phase shift, β

Four types of causal FIR filters with generalized linear
phase, h[n] = ±h[M − n],n = 0, · · · ,M

Definition and derivation (the type of symmetry, with or
w/o phase shift (β), integer or non-integer group delay
(α), even or odd number of filter coefficients)
Design structure (halved # of multiplication)
Zero patterns (the set of four reciprocal zeros)
z = ±1 being zero?

When to use what?
Constraints on the zeros
Integer/non-integer group delay
Phase shift

Lecture 9

Review

Recap

FFT

DIT

DIF

Review - FIR filter design techniques

Windows - Kaiser
Why using window?
The two essential parameters: width of the main lobe
and height of the side lobe
Pros and cons of windowing techniques

Optimal methods - Park-McClellan equiripple
How does PM overcome issues with Kaiser window?

Lecture 9

Review

Recap

FFT

DIT

DIF

Review - IIR

CT -> DT
Impuse invariance

ω = ΩT
preserve good time-domain characteristics
linear scale of the frequency axis + aliasing

Bilinear transformation
s = 2

T (1−z−1

1+z−1) or Ω = 2
T tan ω

2
distortion in frequency characteristics
no aliasing

Lecture 9

Review

Recap

FFT

DIT

DIF

Review - DFT

DTFT
x [n] needs to be either absolutely summable or square
summable
X (ejω) =

∑∞
n=−∞ x [n]e−jωn,

x [n] = 1
2π

∫ π
−π X (ejω)ejωndω

DFS: sampled version of X (ejω) at frequencies wk = 2πk/N

X̃ [k] =
∑N−1

n=0 x̃ [n]W kn
N , x̃ [n] = 1

N

∑N−1
k=0 X̃ [k]W−kn

N where
WN = e−j(2π/N).

DFT: one period of X̃ [k]

X [k] =
∑N−1

n=0 x [n]W kn
N ,0 ≤ k ≤ N − 1,

x [n] = 1
N

∑N−1
k=0 X [k]W−kn

N ,0 ≤ n ≤ N − 1
x̃ [n] = x [((n))N], X̃ [k] = X [((k))N]

Lecture 9

Review

Recap

FFT

DIT

DIF

Discrete Fourier Transform (DFT) - Direct
computation

X [k] =
∑N−1

n=0 x [n]W kn
N ,0 ≤ k ≤ N − 1,

x [n] = 1
N
∑N−1

k=0 X [k]W−kn
N ,0 ≤ n ≤ N − 1

x [n]W kn
N results in 1 complex multiplication∑N−1

n=0 x [n]W kn
N results in N complex multiplications and

N − 1 complex additions for fixed k
With k = 0, · · · ,N − 1, there are N2 complex
multiplications and N(N − 1) complex additions
Therefore, the complexity of direct computation is
O(N2)

Lecture 9

Review

Recap

FFT

DIT

DIF

Rationale of FFT

By decomposing the original sequence into
subsequences, we can reduce the N-point DFT to
M-point DFT where M � N, such that the
computational complexity is O(N log N) instead of
O(N2)

Different ways to decompose a sequence
Decimation-in-time FFT
Decimation-in-frequency FFT

Lecture 9

Review

Recap

FFT

DIT

DIF

Decimation-in-time FFT

Decompose the sequence into a set of even number
points and odd number points

X [k] =
N−1∑
n=0

x [n]W nk
N (1)

=
∑

n even

x [n]W nk
N +

∑
n odd

x [n]W nk
N (2)

=

N/2−1∑
r=0

x [2r]W 2rk
N +

N/2−1∑
r=0

x [2r + 1]W (2r+1)k
N (3)

=

N/2−1∑
r=0

x [2r]W rk
N
2
+ W k

N

N/2−1∑
r=0

x [2r + 1]W (rk
N
2

(4)

= G[k] + W k
NH[k] (5)

Lecture 9

Review

Recap

FFT

DIT

DIF

DIT FFT (cont’d)

The above operations change from an N-point DFT to
N
2 -point DFT. The computational complexity of G[k] and
H[k] is O((N

2)
2, so the complexity of the entire process

is 2(N
2)

2 + N = N + N2

2 < N2

Lecture 9

Review

Recap

FFT

DIT

DIF

Illustration - Butterfly computation

Lecture 9

Review

Recap

FFT

DIT

DIF

Computational complexity

N-point DFT N2

2N
2 -point DFT 2(N

2)
2 + N (N

2)
2 → 2(N

4)
2 + N

2
4N

4 -point DFT 4(N
4)

2 + N + N (N
4)

2 → 2(N
8)

2 + N
4

8N
8 -point DFT 8(N

8)
2 + N + N + N (N

4)
2 → 2(N

8)
2 + N

4

Eventually, when it comes down to just 2-point DFT, there
would be logN

2 number of N ’s summing up together.
Therefore, the complexity of FFT is O(N logN

2)

Lecture 9

Review

Recap

FFT

DIT

DIF

In-place computation

Each level of output overwrites the original memory.
I.e., store results back to the original memory location

Lecture 9

Review

Recap

FFT

DIT

DIF

Bit-reversed order - input sequence got
rearranged

Lecture 9

Review

Recap

FFT

DIT

DIF

Modifications 1 - from inside BF to outside BF

W
(r+N

2)

N = W r
N .W

N
2

N

Lecture 9

Review

Recap

FFT

DIT

DIF

Modifications 2 - rearrange input order (output
bit-reversed order)

Lecture 9

Review

Recap

FFT

DIT

DIF

Modifications 3 - Input in order and output in
order

Distorted butterfly
Not in-place computation

Lecture 9

Review

Recap

FFT

DIT

DIF

Decimation-in-frequency

Decompose the sequence into the first half and the
second half

X [k] =
N−1∑
n=0

x [n]W nk
N (6)

=

N
2 −1∑
n=0

x [n]W nk
N +

N−1∑
n=N

2

x [n]W nk
N (7)

=

N
2 −1∑
n=0

[x [n] + (−1)kx [n +
N
2
]]W nk

N (8)

Lecture 9

Review

Recap

FFT

DIT

DIF

DIF - cont’d

When k is even, x [2r] =
∑N

2 −1
n=0 [x [n] + x [n + N

2]]W
2rn
N ,

i.e., x [2r] =
∑N

2 −1
n=0 g[n]W rn

N
2

, becoming an N
2 -point DFT

When k is odd, X [2r] =
∑N

2 −1
n=0 [x [n] + x [n + N

2]]W
2rn
N ,

i.e., X [2r + 1] =
∑N

2 −1
n=0 [h[n]W n

N]W
rn
N
2

, where

h[n] = x [n]− x [n + N
2], again becoming an N

2 -point DFT

Lecture 9

Review

Recap

FFT

DIT

DIF

DIF - flow graph

Compared to DIT, the multiplication occurs after the butterfly
while DIT occurs before the butterfly

	Review
	Recap
	FFT
	DIT
	DIF

