
A Primer on Distributed
Intelligence

March 26, 2007
Prof. Lynne Parker

Two Types of “Intelligence”
in Multi-Agent Systems

Distributed Intelligence

Cooperative:Cooperative:
Agents work Agents work

together toward together toward
shared goal shared goal

Competitive:Competitive:
Agents have different Agents have different

goals and compete goals and compete
against each other against each other

Part I: Cooperative Intelligence

• Today’s focus: cooperative motions

– Specifically:

•Following/Swarming/Flocking/Schooling

•Formations

Following / Swarming / Flocking / Schooling

• Natural flocks consist of two
balanced, opposing behaviors:
– Desire to stay close to flock
– Desire to avoid collisions

with flock

• Why desire to stay close to
flock?
– In natural systems:

• Protection from predators
• Statistically improving
survival of gene pool from
predator attacks

• Profit from a larger effective
search pattern for food

• Advantages for social and
mating activities

Craig Reynolds (1987) Developed Boids

• “Flocks, Herds, and Schools: A Distributed Behavioral
Model”, Craig Reynolds, Computer Graphics, 21(4), July
1987, pgs. 25-34.

Simulated boid flock avoiding cylindrical obstacles

How do Boids work?

Separation: steer to avoid
crowding local flockmates

Alignment: steer towards
average heading of local

flockmates

Cohesion: steer to move toward
the average position of local

flockmates

Reynold’s Boid Flocks

• Boid neighborhood characterized by:
– Distance (measured from center of boid)
– Angle (measured from direction of flight)

angle

distance

direction of flight

Translating these Behaviors to Code on Robots

• Work of Mataric, 1994

• General Idea:
– Use “local” control laws to

generate desired “global”
behavior

• The Robots:
– 12” long
– 4 wheels
– Bump sensors around body
– Radio system for:

• Localization
• Communication
• Data collection
• “Kin” recognition

The Nerd Herd: Mataric, MIT, 1994

The Nerd Herd Approach

• Fundamental principle: Define basis behaviors as general building
blocks for synthesizing group behavior

• Set of basis behaviors proposed:
– Avoidance
– Save-wandering
– Following
– Aggregation
– Dispersion
– Homing

• Combine basis behaviors into
higher-level group behaviors:
– Flocking
– Foraging

Safe-Wandering Algorithm

•Avoid-Kin:
–Whenever an agent is within d_avoid

•If the nearest agent is on the left
– Turn right
– Otherwise, turn left

•Avoid-Everything-Else
–Whenever an obstacle is within d_avoid

•If obstacle is on right only, turn left
•If obstacle is on left only, turn right
•After 3 consecutive identical turns, backup and turn
•If an obstacle is on both sides, stop and wait.
•If an obstacle persists on both sides, turn randomly and
back up

•Move-Around:
–Otherwise move forward by d_forward, turn randomly

Following Algorithm

Follow:
–Whenever an agent is within d_follow

•If an agent is on the right only, turn right
•If an agent is on the left only, turn left

If sufficient robot density, safe_wandering + follow yield more complex behaviors:
• e.g., osmotropotaxic behavior of ants: unidirectional lanes

Dispersion Algorithm

Dispersion:
–Whenever one or more agents are within
d_disperse
•Move away from Centroid_disperse

Aggregation Algorithm

Aggregate:
–Whenever nearest agent is outside d_aggregate

•Turn toward the local centroid_aggregate, go.

–Otherwise, stop.

Homing Algorithm

Home:
–Whenever at home

•Stop

–Otherwise, turn toward home, go.

Generating Flocking Through Behavior
Combinations

•Flock:
–Sum weighted outputs from Safe-Wander, Disperse,
Aggregate, and Home

In general, flocking should allow agents to move around obstacles:

Work of Reynolds (1987)

Boids Movie
“Stanley and Stella in Breaking the Ice”

QuickTime™ and a
Sorenson Video decompressor
are needed to see this picture.

http://odyssey3d.stores.yahoo.net/comanclascli2.html

http://odyssey3d.stores.yahoo.net/comanclascli2.html

For lots more information on Boids
(Flocks, Herds, Schools …)

• Great web site:
http://www.red3d.com/cwr/boids/

Contains lots of pointers to related literature on this topic

http://www.red3d.com/cwr/boids/

Formations

Key Issues:

• What is desired formation?

• How do robots determine their desired position in the formation?

• How do robots determine their actual position in the formation?

• How do robots move to ensure that formation is maintained?

• What should robots do if there are obstacles?

• How do we evaluate robot formation performance?

Example Movies of Column Formation-Keeping

Parker, 1995

Parker et al.,
2001

Issue in Formation Keeping: Local vs. Global Control

• Local control laws:
– No robot has all pertinent information
– Appealing because of their simplicity and potential to generate

globally emergent functionality
– But, may be difficult to design to achieve desired group behavior

• Global control laws:
– Centralized controller (or all robots) possess all pertinent

information
– Generally allow more coherent cooperation
– But, usually increases inter-agent communication

Let’s look at approach of Balch (1998)

“Behavior-Based Formation Control for Multiagent Robot
Teams”, by Tucker Balch, Ronald C. Arkin

Published in:
IEEE Transactions on Robotics and Automation
December, 1998.

Available online at:
http://www.cs.cmu.edu/~trb/papers/formjour.ps.Z

http://www.cs.cmu.edu/~trb/papers/formjour.ps.Z

Balch’s Formation Types and Position Determination

Formations: Column
1

Line DiamondWedge
3

1
3

4

2
3 1

24 3 1 2
4 2

4

Position Determination (i.e., figuring out where robot should be):

Unit-center-referenced Neighbor-referencedLeader-referenced

13

4 2

13

4 2

13

4 2

Requirements of Formation Techniques

• Unit-center approach:
– Requires transmitter and receiver for all robots
– Requires protocol for exchanging position information
– Places heavy demand on passive sensor systems: each robot has to track

3 other robots that may be spread across a very large field of view
• Leader-referenced approach:

– Requires only one transmitter for leader and one receiver for each
follower robot

– Thus, has reduced communications bandwidth
– Require tracking only one robot
– However, leader may be too far away to sense
– Local interactions among robots may make little sense, if they aren’t

paying attention to each other
• Neighbor-referenced approach:

– Requires tracking only one other robot
– However, less information on global formation requirements could be

more formation error

Basic Behaviors of Formation-Keeping Robot

Combine behaviors:
• move-to-goal
• avoid-static-obstacle
• avoid-robot
• maintain-formation

Result:
Robot moves to a goal location while remaining in
formation and avoiding obstacles and collisions with
other robots

Maintain-formation

• Perceptual Function: detect-formation-position
– Determine robot’s desired location
– Determine robot’s relative position in the overall formation
– Determine other robots’ positions

• Motor output (in form of motion vector).
– Direction: always in the direction of the desired formation

position.
– Magnitude: depends on how far the robot is away from the

desired position.

Output Vector Magnitude Calculation

Magnitudes:

Ballistic ZoneControlled Zone

Dead
Zone

• Dead zone:
– Robot is within acceptable

positional tolerance.
– Output vector magnitude is

always 0.

• Controlled zone:
– Robot is somewhat out of

position.
– Output vector magnitude

decreases linearly from a
maximum at zone’s furthest
edge to 0 at the inner edge.

– Directional component: points
toward dead zone’s center.

• Ballistic zone:
– Output vector magnitude is set

to its maximum
– Directional component points

t d th t f th

When there are obstacles…

• To avoid obstacles like barriers, choices are:
– Move as an unit around the barrier
– Divide into subgroups
– Depends on the relative strengths of behaviors (gain)

Balch’s Formation Results

• For 90 degree turns:
– Diamond formation best with unit-center-reference
– Wedge, line formations best with leader-reference

• For obstacle-rich environments:
– Column formation best with either unit-center or

leader-reference
• Most cases:

– Unit-center better than leader-center
– Except:

•If using human leader, not reasonable to expect to use
unit-center

•Unit-center requires transmitter and receiver for all
robots, whereas leader-center only requires transmitter at
leader plus receivers for all robots

•Passive sensors are difficult to use for unit-center

Summary of Formation Approaches:
Which is best when?

Line

NeighborLeaderUnit-center

Wedge Diamond
Column

134 2

1

3

4

2
1

3

4

2
13

4 2

Position Determination:

Formations:

13

4 2

13

4 2

13

4 2

Part II: Competitive Agents

• Can take lots of forms

• Today: Focus on Game Theory

What is Game Theory About?

• Analysis of situations where conflict of interests are
present

2

2

• Game of Chicken
– driver who steers away looses

• What should drivers do?

• Goal is to prescribe how conflicts can be resolved

What is a Game?

• Various types of games exist (e.g. card, board, sport, war,
etc.)

• Game Theory deals with games having the following
properties:

– Two or more players
– Choice of action involves a strategy
– One or more outcomes
– Outcome depends on the chosen strategies: i.e.,

strategic interaction

• Rules out:
– Games of pure chance
– Games without strategic interaction

Five Elements of a Game

1. Set of Players

2. Set of Actions

3. Set of Strategies

4. Set of Outcomes

5. Payoff or Utility

Assumed Rationality

• We assume players are rational

• That is, players try to maximize their payoffs,
irrespective of what the other players are doing.

Example: The Prisoners' Dilemma (PD) Game

• Players:
2 Prisoners

• Actions:
Prisoner 1: Confess, Deny
Prisoner 2: Confess, Deny

• Strategies:
Choose action simultaneously, without
knowing each other’s actions.

• Outcomes:
Quantified in prison years

• Payoff:
Fewer years == Better payoff

C

Deny?
Confess?

Types of Games

• Sequential vs. Simultaneous moves

• Single Play vs. Iterated

• Zero vs. non-zero sum
•
• Perfect vs. Imperfect information

• Cooperative vs. conflict

• Deterministic vs. chance

Representation of Games
Matrix Form

• A matrix which shows the players, strategies, and
payoffs.

• Presumed that players act simultaneously.

• Prisoner’s Dilemma example:

P2 Confess P2
Deny

P1 Confess 5, 5 0, 10

P1 Deny 10, 0 1, 1

General Matrix Representation of a Game

A B C

A (2, 2) (0, 0)

(3, 4)

(-2, -1)

B (-5, 1) (3, -1)Player 1

Player 2
Strategy set
for Player 1

Payoff to
Player 1

Strategy set
for Player 2

Payoff to
Player 2

• Simultaneous play
– players analyze the game and write their strategy on a paper

• Combination of strategies determines payoff

How to Solve?

• Use concepts of:
– Dominated strategy removal
– Saddle points
– Pareto optimality
– …

• Too much to get into today

• Instead:
– Convert matrix to game tree
– Assume iterated decisions (instead of simultaneous)

•That is, players take turns making decision
– Make use of mini-max algorithm

Game Trees

• Non-leaf nodes:
– Represent decision-

point for one of the
players

• Edges:
– Represent available

choices of actions

• Leaf nodes:
– State payoffs for

each player

Game Tree Example

Player 1

Player 2

• Strategy set
for Player 1:
{L, R}

Player 2
L

L

R

RR L

3, 1 1, 2 -2, 1 0, -1

• Strategy for Player 2: __, __

what to do
when P1 plays L

what to do
when P1 plays R

Payoff to
Player 2

Payoff to
Player 1

• Strategy set for Player 2: {LL, LR, RL, RR}

Game Tree Applied to Noughts and Crosses
(i.e., Tic-tac-toe)

• 2-player
• Deterministic
• Turn taking

Minimax Algorithm

• Minimax algorithm
– Perfect for deterministic, 2-player game
– One opponent tries to maximize score (Max)
– One opponent tries to minimize score (Min)
– Goal: move to position of highest minimax value
– Identify best achievable payoff against best play

The Mini-Max Algorithm Approach

Algorithm approach:

1. Generate game tree completely

2. Determine utility of each terminal state

3. Propagate the utility values upward in the tree by
applying MIN and MAX operators on the nodes in the
current level

4. At the root node use minimax decision to select the move
with the max (of the min) utility value

Minimax Algorithm Code:
Recursive implementation

Minimax Algorithm (cont’d)

Minimax Algorithm (cont’d)

3 9 0 7 2 6

Minimax Algorithm (cont’d)

3 9 0 7 2 6

3 0 2

Minimax Algorithm (cont’d)

3 9 0 7 2 6

3 0 2

3

Minimax Algorithm (cont’d)

• Properties of minimax algorithm:
– Complete? Yes (if tree is finite)
– Optimal? Yes (against an optimal opponent)
– Time complexity? O(bm)
– Space complexity? O(bm) (depth-first exploration)

But we can do better…
Move evaluation without complete search

• Complete search is too complex and impractical

•New α-β Algorithm:

– CUTOFF-TEST: cutoff test to replace the termination
condition (e.g., deadline, depth-limit, etc.)

– EVAL: evaluation function to replace utility function (e.g.,
number of chess pieces taken)

More on the α-β algorithm

• Principle:
– If a move is determined worse than another move already

examined, then further examination deemed pointless

• Same basic idea as minimax, but prune (cut away) branches
of the tree that we know will not contain the solution.

• Because minimax is depth-first, let’s consider nodes along a
given path in the tree. Then, as we go along this path, we
keep track of:
–α : Best choice so far for MAX
– β : Best choice so far for MIN

• Does it work? Yes, in roughly cuts the branching factor
from b to √b resulting in twice as far look-ahead than pure
minimax

α-β pruning: example

≥ 6
MAX

MIN 6

6 12 8

α-β pruning: example

≥ 6
MAX

MIN 6 ≤ 2

6 12 8 2

α-β pruning: example

≥ 6
MAX

6

6 12 8 2

≤ 2MIN ≤ 5

5

α-β pruning: example

≥ 6
MAX

6

6 12 8 2

≤ 2

Selected move

MIN ≤ 5

5

α-β pruning: General principle

Player

m

n

α

v

Opponent
If α > v then MAX will chose
m so prune tree under n

Similar for β for MIN
Player

Opponent

The α-β algorithm

Note: These are both
Local variables. At the
Start of the algorithm,
We initialize them to
α = -∞ and β = +∞

Applet for experimenting
with Minimax and Alpha-Beta

http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

Summary: We’ve looked at two types of
“Intelligence” in Multi-Agent Systems

Distributed Intelligence

Cooperative:Cooperative:
Agents work Agents work

together toward together toward
shared goal shared goal

Competitive:Competitive:
Agents have different Agents have different

goals and compete goals and compete
against each other against each other

Techniques we’ve looked at:

• Following / Swarming /
Flocking / Schooling

• Formations

Techniques we’ve looked at:

• Game Theory

• Minimax algorithm

• α-β algorithm

	A Primer on Distributed Intelligence
	Two Types of “Intelligence” in Multi-Agent Systems
	Part I: Cooperative Intelligence
	Following / Swarming / Flocking / Schooling
	Craig Reynolds (1987) Developed Boids
	How do Boids work?
	Reynold’s Boid Flocks
	Translating these Behaviors to Code on Robots
	The Nerd Herd Approach
	Safe-Wandering Algorithm
	Following Algorithm
	Dispersion Algorithm
	Aggregation Algorithm
	Homing Algorithm
	Generating Flocking Through Behavior Combinations
	Boids Movie“Stanley and Stella in Breaking the Ice”
	For lots more information on Boids (Flocks, Herds, Schools …)
	Formations
	Example Movies of Column Formation-Keeping
	Issue in Formation Keeping: Local vs. Global Control
	Let’s look at approach of Balch (1998)
	Balch’s Formation Types and Position Determination
	Requirements of Formation Techniques
	Basic Behaviors of Formation-Keeping Robot
	Maintain-formation
	Output Vector Magnitude Calculation
	When there are obstacles…
	Balch’s Formation Results
	Summary of Formation Approaches: Which is best when?
	Part II: Competitive Agents
	What is Game Theory About?
	What is a Game?
	Five Elements of a Game
	Assumed Rationality
	Example: The Prisoners' Dilemma (PD) Game
	Types of Games
	Representation of GamesMatrix Form
	General Matrix Representation of a Game
	How to Solve?
	Game Trees
	Game Tree Example
	Game Tree Applied to Noughts and Crosses(i.e., Tic-tac-toe)
	Minimax Algorithm
	The Mini-Max Algorithm Approach
	Minimax Algorithm Code:Recursive implementation
	Minimax Algorithm (cont’d)
	Minimax Algorithm (cont’d)
	Minimax Algorithm (cont’d)
	Minimax Algorithm (cont’d)
	Minimax Algorithm (cont’d)
	But we can do better…Move evaluation without complete search
	More on the - algorithm
	- pruning: example
	- pruning: example
	- pruning: example
	- pruning: example
	- pruning: General principle
	The - algorithm
	Applet for experimenting with Minimax and Alpha-Beta
	Summary: We’ve looked at two types of “Intelligence” in Multi-Agent Systems

