
1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dataless Sharing of Interactive Visualization
Mohammad Raji, Jeremiah Duncan, Tanner Hobson, and Jian Huang

Abstract— Interactive visualization has become a powerful insight-revealing medium. However, the close dependency of interactive
visualization on its data inhibits its shareability. Users have to choose between the two extremes of (i) sharing non-interactive dataless
formats such as images and videos, or (ii) giving access to their data and software to others with no control over how the data will be
used. In this work, we fill the gap between the two extremes and present a new system, called Loom. Loom captures interactive
visualizations as standalone dataless objects. Users can interact with Loom objects as if they still have the original software and data that
created those visualizations. Yet, Loom objects are completely independent and can therefore be shared online without requiring the data
or the visualization software. Loom objects are efficient to store and use, and provide privacy preserving mechanisms. We demonstrate
Loom’s efficacy with examples of scientific visualization using Paraview, information visualization using Tableau, and journalistic
visualization from New York Times.

Index Terms—shareable visualizations, visualization recordings, user interaction

F

1 INTRODUCTION

INTERACTIVE visualization is crucial when people need to an-
swer questions with data. Its power comes from the interactions

and visual responses that continuously refine the questions we
ask. Along with the accelerating growth of “big data”, interactive
visualizations are also increasingly used as a shared medium by
large and collaborative teams [1], [2], [3]. As such, methods to
share interactive visualization are becoming more critical.

However, interactive visualization has a close dependency
on the data and the software system that creates and runs the
visualization. As a result, to a vast majority of everyday users,
sharing interactive visualizations can become overwhelmingly
expensive because of: 1) the size of the data, 2) the platform
the visualization software runs on, and 3) the rules and regulations
that govern and constrain the export of the data.

Currently, the cheapest way to share visualizations is to use
traditional methods, such as static images and video recordings.
These traditional methods lose interactivity and diminish the
analytical value of the shared visualization. However, it’s worth
noting that these old methods provide dataless sharing of scripted
visualizations. “Dataless” in the sense that the original dataset is
no longer required by a subsequent user, and hence the shared
visualizations can be free from any of the above cost barriers.

In this paper, we present a method for dataless sharing of
interactive visualization, where a shared visualization no longer
relies on its original data source nor the original software, yet
a fully customizable amount of interactivity is maintained and
controlled by the creator of the shared interactive visualizations.
The aspect of sharing as well as maintaining interactivity entails
the following special design considerations.

Efficiency. Traditional interactive visualizations depend on
their datasets. That dependency is natural and inherent, however,
it can be expensive. If a dataset is larger than affordable to store,
process, or send over a network, it becomes infeasible to share
with others. In contrast, traditional dataless visualizations (e.g.
images and videos) occupy much less space and require very
modest computing power, making them easy to share. Therefore,

• The authors are with the University of Tennessee, Knoxville.

it is important that our approach be efficient in both storage and
computing needs when adding interactivity into the mix.

Sustainability. When an interactive visualization is used
as a tool, the implied life duration is very short. When shared,
the duration has to be much longer, if not eternal. Web-based
visualizations have taken a good step towards this. However, as
technology evolves, better tools will replace older ones, and older
visualizations become harder to reproduce. An example of this are
the many visualizations created using Adobe Flash that are now
obsolete. Without any data or software dependency, images and
videos are very sustainable. We wonder if we can find a way to
do the same for dataless interactive visualizations and provide a
general and reproducible format, and study what costs this entails.

Controllability. Traditionally, when one has the software
and data for a visualization, they have total access. To share that
visualization, they need to share that full access with recipients
unless they substitute the visualization with non-interactive dataless
alternatives. Many datasets are never shared in forms beyond non-
interactive images or videos due to this reason and as a result of
organizational policies. Therefore, it is beneficial to be able to create
interactive recordings with variable access policies depending on
the audience and regulations that govern the data [4].

With regard to these requirements, we have developed an
approach to record visualizations along with controllable degrees
of interactivity. The prototype system is called Loom. Loom can
capture interactive visualizations as dataless independent objects.
During creation, a user (video creator) sets the variety of user
interactions that are allowed by recipients. Loom then provides
an interactive recording of the visualization. Loom recordings are
viewable in web-browsers without the need of any plugins.

For instance, a Loom recording can capture a set of visualiza-
tions in the Tableau application. The recording becomes completely
independent from Tableau and any data or server connections that
retrieve data products. The recording can then be interacted with
offline, shared, as well as viewed online without Tableau installed.
As another example, interactive recordings of a volume rendering
technique in Paraview or VisIt can be submitted along with a paper
submission without exposing their data or source code. Later the
same recording can be shared on the web so that the audience
that reads the work can also interact with different areas of the

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

rendering online.
While Loom focuses on shareability, it is also related to

the topic of visualization archiving. In particular, we note that
“archiving for the purpose of sharing” is different from “sharing
with a possibility of archiving”, and we feel the scope of Loom is
more modestly the latter. This is because scientific archives have
two missions: (i) to make results openly available in perpetuity,
and (ii) to organize scientific information in a narrated way that
allows search and empowers open scientific inquiry [5]. To this
end, this paper aims at sharing interactive visualizations openly,
in perpetuity, with a possibility of archiving, and without needing
to preserve the original software nor the data used to create those
visualizations.

Note that while Loom recordings can include exploratory
visualizations that include many application states, they are mainly
created for explanatory visualizations [6] in which the interactive
workflow is pre-determined and known. Additionally, similar to
video recordings, Loom recordings cannot capture the entirety of
the exponentially large interactive space of a visualization. Instead,
they make efficient shareability of the interaction experience
possible and fill the gap in the shareable-visualization spectrum.

To capture the interaction space of a visualization, Loom
models user interactions as an action tree. Given an interactive
visualization tool, a creator can use Loom’s Overlay Application
(LOA) to specify different UI areas and indicate to Loom which
interactions those UI areas support (e.g. clicking, brushing). Then,
LOA uses OS-level UI automation to interact with the visualizations
and capture its different states as images. It then organizes
and compresses these images into a single object. Essentially,
our methodology takes a black-box perspective with respect to
interactive visualization where one can consider an interactive
visualization as a function, which accepts user actions as input and
provides visual responses, as output. While this is a very simplified
view, it enables modeling and reproducing interactive visualization
experiences of widely varied applications. The Loom project will
be made open-source.

In summary, our contributions are the following.

• Presenting a capture/reconstruct method for the recording
and sharing of dataless interactive visualizations, making
them independent of the original data and application source
code.

• Enabling the control of access policies on top of existing
interactive visualizations.

• A prototype implementation of our method called Loom
with a smart toolset that assists users in capturing interactive
visualizations.

The rest of this paper is as follows. We discuss the background
of our work in Section 2. The methodology of our system is
explained in Section 3. Section 4 covers three types of applications
(desktop-based information-visualization, web-based information
visualization, and scientific visualization) captured using Loom.
Results and a discussion on the limitations of Loom are discussed
in Section 5. The paper is concluded in Section 6.

2 BACKGROUND

2.1 Shareability and Provenance
Visualizations are often shared to communicate insights. Tradition-
ally, shared visualizations have taken the form of non-interactive
images and videos, or otherwise niche-focused and custom-built

applications [7], [8]. Modern web applications have taken a great
step towards general shareability of interactive visualization with
the advent of flexible libraries [9], [10] and Javascript frameworks
with data-binding support [11], [12]. For example, the species-
mapper tool from the National Park service provides the option
of sharing the state of the visualization with a hyperlink that
reproduces the state when navigated to [13].

However web solutions either require dedicated data servers or
small data sizes that can be transferred to the client. Additionally,
these approaches make the data and software accessible to all of
their users on the web. Also, software used for visualization can
become obsolete as is evident by the discontinuation of Adobe
Flash [14], and data ownership policies mean that data sources may
not always be available, therefore hindering shareability.

Sharing visualizations is not limited to the visuals themselves,
but also the process of analysis through the topic of provenance.
Heer at al. consider visual analysis as not just the generation of
visualizations statically, but as an iterative process that is refined
through interaction [15]. As such, they denote recording and sharing
this process as crucial components of the visual analysis taxonomy.

VisTrails [16] systematically captures provenance information
in a tree structure and is used in conjunction with other visualization
tools to store and recreate workflows. In Paraview [17], Lookmarks
have been used to store and share views of datasets similar to how
bookmarks work for webpages [18].

The topic of provenance has also been looked at in the context
of web applications. The Open Provenance Vision [19] has been
presented as a general vocabulary and format that can be used
by different semantic web applications. As follow-up work, the
W3C presented the PROV standard as a set of specifications for
storing and sharing transformations to data [20]. Many applications
have been built on top of such web-based specifications, such as
Komadu [21], and Karma [22].

Within web-based visualizations, SIMProv.js has been recently
introduced as a general way of augmenting web-based applications
to include provenance throughout the user’s interactions and
reasoning process [23].

While Loom recordings can be used to communicate a certain
workflow or a user’s analytic process, our aim is to allow users to
have a sense of flexibility in their interactions. Additionally, Loom
is not dependent on a particular visualization type or application
and supports a variety of visualizations.

One of the most related works to Loom is Graphical Histories
[24], in which the states of a visualization application are stored as
a hierarchy of images depending on user interactions. Similar works
exist that store image transformations in hierarchical structures [25],
[26]. Loom takes this idea further and recreates the interactivity
of the application at runtime so that the visualization can be used
while the data and code no longer need to exist.

2.2 Automation in Visualizations

Given the highly visual and interactive aspects of visualizations, a
Graphical User Interface (GUI) of some sort is often assumed with
visualizations. When using these GUIs, a common user behavior is
to search through a problem space in search of significant patterns.

As common in computer science, the search can be automated
even for visualization. For example, automated compound boolean
query based visualizations [27], automated regular expression
based queries [28], even one of the most difficult tasks in
visualization, the design of effective transfer functions [29], [30],

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

[31]. These automations employ simple, powerful visualization
specific languages, and as a result, have led to many visualization
researchers considering the specification of visualization as textual.

In the above cases, researchers used special program-accessible
interfaces to control the visualizations and found great successes.
In a related way, other researchers have also built and used UI-bots
to automatically go through a graphical user interface. One of the
most recent works is the use of monkey testing to automatically
stress-test web based visualizations [32], [33].

In this work, we have also developed a UI-bot and ways for
a human expert (e.g. a visualization developer) to guide the UI-
bot to methodically go through the problem space as specified
by the graphical user interfaces. Our key focus here is that, in a
transparent way, the captured visualizations are organized according
to guidance provided by the human expert.

2.3 Image and Video Compression
Storing the captured raster images can take a lot of space
and a small size is vital to shareability. Therefore, appropriate
compression is required. Visualization researchers have always
been dedicated users of the most advanced image and video
compression techniques, such as JPEG, PNG, H.264 etc.

Image compression has been used extensively whenever a
screen capture or a framebuffer has been exported as the end result
of a visualization. However, image-based visualization systems
have also significantly leveraged image compression to store
intermediate visualization products. Some of the most innovative
systems, such as Cinema [34] have built advanced systems around
image-compression technology so that specialized visualization
objects can be efficiently compressed, managed and creatively re-
used. To this end, image-compression has been used not only as
end products of visualization, but also as intermediate products of
visualization.

Compressing visualizations as videos is common. However, its
usage has mostly been limited to when a visualization is a time-
sequence treated as a video. Sometimes, in a remote visualization
setting, videos are created live when a visualization is being
computed interactively [35]. To this end, videos are primarily
end products of visualization.

From this respect, to our knowledge, our work is one of the
first to develop specialized ways to leverage video compression
technology to store images as intermediate products, so that users
can later make unconstrained use of visualizations.

Video compression techniques often leverage the similarity of
consecutive images that are stored in them as frames. Our work
benefits from this fact, since our captured images follow a natural
order that maximizes the similarity between consecutive frames.
Additionally, video decompression is automatically supported and
is an optimized feature in browsers. Loom relies on the fast in-
browser decompression of videos at runtime.

2.4 Capturing and Modeling Application Behavior
Interaction with applications and managing their state have been
modeled with UMLs and other types of finite state machines for
many years [36], [37]. UMLs provide a complex state machine that
can represent how one can interact with a user interface and how the
state of the application changes with actions. However, UMLs can
quickly become very large and complex. In recent years, behavior
trees have been used to model artificial intelligence in games [38]
as simpler and more modular alternatives. Originally, behavior trees

were designed by Dromey et al. as a way to formalize requirements
in designing systems [39].

Inspired by behavior trees, we use a tree structure as a simple
way to model interactions in a visualization application. When
using Loom objects at runtime, our system converts the tree
to a state machine in order to partially reconstruct the original
visualization’s behavior.

Capturing and storing an entire application along with its data
and code has been possible for a long time with the help of virtual
containers. Containers can be used to store applications along
with their data and requirements [40]. While containers simplify
installation and reuse, the size of the resulting container images can
grow exponentially. Additionally, any system that is not based on
processed products of the application requires the presence of the
data source or at least a connection to it. However, this is infeasible
when one wishes to not share their data or source code (e.g. in
paper submissions). This is also difficult when the size of the data
increases, making web-based sharing infeasible.

3 METHOD

To support recording the large variety of visualizations and
platforms that exist today, some of which can be offline, Loom
takes a platform-agnostic and black box perspective on interactive
visualizations. In this view, the input to visualization applications
are user actions, and the output are visual responses. Loom then
models this input/output behavior.

As with user interfaces in general, interactions with a visualiza-
tion have a hierarchical nature, in that with every action, a new set
of options to interact with are given to the user. Inspired by behavior
trees [38], Loom models the hierarchy of actions in a visualization
using an action tree (Section 3.1). It then traverses the tree and
takes those actions automatically to capture the visual responses
associated with each action. The actions and the responses are then
stored together as a Loom recording (Figure 1-top). This is detailed
in Section 3.2.

Fig. 1: The overview of the Loom system. The two stages of a Loom
object’s lifecycle are shown. The interactions with a visualization
are modeled using an “action tree”. The tree is then traversed
to capture visual responses as a compressed video. The tree and
video are then used to reconstruct the interactive visualization in a
browser.

At runtime, to view and interact with the recording, our
browser-based viewer opens the Loom recording and reconstructs

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

the visualization application using HTML’s DOM event handlers
(Section 3.3). Based on the user’s interactions in the browser,
appropriate visual responses are picked by Loom and shown
(Figure 1-bottom). To the end-user, the experience is as if they are
interacting with the original visualization and data.

Specifying the action tree is done by the creator of the recording.
Loom provides a rich toolset that assists the creator in action
specifications (Section 3.4). Loom’s supported interactions can be
extended using plugins (Section 3.5). The last section of the our
methodology describes the control of privacy using encryption.

3.1 Modeling Interactive Visualizations

Every visualization workflow consists of a set of interaction
sequences that users perform. Consider the Tableau visualizations
in Figure 2. These interaction sequences could be as simple as:
click on the “Overview” button to launch the overview window, and
then mouse over individual states on the map for more information.
Another sequence could be to click on the “Profit Ratio by City”
button, and then scroll through the bar graph in the new window.
While some interactions provide more flexibility than others (e.g.
brushing vs. clicking), with every interaction, users are presented
with further options that can be picked and interacted with.

Each sequence can form a different hierarchy of possible float
of actions for users. Loom models these options as action tree.
As with behavior trees, action trees express the various states of
an application and the flow of control from one state to another.
A simplified version of the action tree of the Tableau example is
shown in Figure 3.

Fig. 2: The Tableau application (left) showing the sample superstore
dataset. Clicking on the first highlighted button at the bottom of
the screen (Overview) shows a map view. The next button shows
a bar graph of profit ratio by city. It is only after clicking the
Overview button, that the map becomes available and the states
become clickable. This is an example of hierarchical behavior in a
user interface.

Every action is associated with an element in the visualization
(a button, a map, etc.) that can be interacted with. We call these
elements targets. Additionally, each action can have other attributes
such as the type of action, and possible children nodes that can be
interacted with once the action is taken. The following are the set
of attributes that Loom keeps in an action tree.

• ActionType (String) represents the type of action that
can be performed on a target. Examples are “clicking”,

Fig. 3: An action tree for the Tableau superstore example. Every
node of the tree is a state in the application. The action that allows
one to go to a state is written in brackets inside each node. For
example, one can hover over Washington on the map only after
they have clicked on the “Overview” button that reveals the map
visualization.

“brushing”, “3D rotation”, etc. The ActionType string
corresponds to the interactions specified internally or
interaction plugins written by users.

• Shape (SVG format) represents the position and shape of
the region that the interactive element spans on the screen.

• Children (Object) represents a list of child elements that
can be interacted with once this action is taken. An example
of children elements are buttons within a dropdown for the
parent dropdown button. The dropdown button must first be
interacted with before the buttons within it can be chosen.

Some additional properties such as the name, and description of
the target element are also stored to facilitate searching capabilities
in the Loom viewer discussed in Section 3.3.

Action trees are specified interactively by users (creators) when
creating an interactive Loom recording. Loom provides a toolset to
assist users in the tree specification (Section 3.4).

Having modeled the input to the visualization, Loom then
systematically collects the static visual responses that are associated
with every application state in the action tree. To capture these
responses, Loom automatically traverses the tree and takes the
actions at each node using a UI bot that controls the mouse and
keyboard. After taking every action, Loom takes a screenshot of the
visualization and saves this as a visual response. Such automation
is generally available by using OS-level libraries.

Every screenshot has a unique ID that is then stored in the
corresponding tree node. This ID essentially maps input actions to
visual responses in our black-box visualization model.

Starting from the root of the action tree, every branch down
to the leaves is a sequence of possible interactions. For instance,
in our Tableau example, a user can select the overview, then click
on any of the states on the visualized map. Another path is for the
user to select the profits button and view the bar graph. Due to
this, the traversal algorithm should interact with only the nodes of
a sequence starting from the root and ending at leaves and cannot
jump to other branches along the way. As another example, consider
an interface that requires the user to click on a dropdown, then
click on an option of the dropdown to reveal a map visualization.
An illustration of its action tree can be seen in Figure 4. The left
most branch starts from the root, then based on the left most child
of the root, Loom chooses to click on the dropdown. The dropdown
opens at this point in time. Loom then has the option to go to the
left most child of the dropdown and click on the map visualization
button. Finally, Loom can click and interact with the map. Note
that after interacting with the map, it is impossible to click on a

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4: A simplified action tree for a dropdown button. Different
visualizations are shown based on the two options of the dropdown.
After interacting with the interactive map, Loom’s UI bot needs to
start from the root of the tree again in order to reach the interactive
bar chart. This requires restarting a pre-order traversal.

different option of the dropdown simply because the dropdown is
no longer open. In other words, the application has lost its previous
state. Inevitably, Loom must start from the root again then choose
a different branch along the way. This process is repeated until all
leaves have been visited. This traversal process is equivalent to a
pre-order traversal in which after every set of leaf nodes that share
a parent, we go back to the root. The algorithm for this traversal is
shown in Algorithm 1.

The DO ACTION function in Algorithm 1 performs the spe-
cific action for the target (e.g. move mouse, click, etc.). The
CAPTURE SCREENSHOT function takes a screenshot and returns
an index representing the screenshot. The number is then set to the
frame number for the node and will be used at runtime.

Algorithm 1 Traversal of the action tree for automated UI
interaction

1: procedure TRAVERSE(tree)
2: repeat
3: n←Find next non-visited leaf node
4: Find the path from root to n
5: for every node along the path do
6: VISIT(node)
7: for every leaf node that is a sibling of n do
8: VISIT(node)
9: until all nodes have been visited

10:
11: procedure VISIT(node)
12: DO ACTION(node.action)
13: if node has not been visited before then
14: f rame num←CAPTURE SCREENSHOT()
15: node. f rame num← f rame num

3.2 Object Construction

A Loom recording consists of an action tree and a visual response
per action. In the following, we go over how Loom encodes and
stores this information efficiently in a shareable format.

3.2.1 Encoding the Action Tree

Loom stores action trees in JSON format. JSON is chosen because
of its wide support in various platforms including web-browsers.
The tree’s root node is a special node named “window”, that
does not represent an action but stores the width and height of
the recording as well as the rest of the tree as its children. All
other nodes contain the action type, the shape of the target, name,

description, and the associated ID of the visual response for the
action.

Interactive elements can take various shapes in a visualization.
We opted for the standard SVG specifications [41] when storing
shape information in the tree. For example, rectangular elements
have properties such as x, y, width, and height, while polygons
are represented as an array of points with x and y coordinates. The
SVG information is stored in the shape attribute of a node.

JSON, and SVG are both heavily used in web development
and this has enabled simple browser-support for viewing Loom
recordings, increasing shareability, and longevity.

3.2.2 Encoding Visual Responses
Actions are associated with visual responses. Every visual response
can be simply stored on disk or in a database. However, to facilitate
shareability, it is important to store these action-responses in a
packageable, and efficient format that can be opened in various
ecosystems and shared across the web. Considering that different
states of an application share many similarities and only minimally
differ from one another, we used video compression to store the
screenshots. Video compression technologies often significantly
take advantage of similarities between video frames.

To store the association between the responses and states in
the action tree, we stored the frame numbers of each screenshot
in the video in its corresponding element in the action tree
as the frame no property. The frame no is essentially the
aforementioned ID of the visual response. In other words, at this
point, Loom has linearized the various application states and stored
them sequentially in a video.

For the video format, we chose MP4 with H.264 compression
using the ffmpeg implementation. Other technologies such as WebM
and H.265 could also be used.

3.3 Reconstructing Interactive Visualizations

Reconstructing the application as an interactive visualization takes
place in a browser. The code for viewing a compressed Loom
object is written in Javascript and therefore can be executed using
any modern browser on different devices such as desktops, tablets
and mobile phones.

In order to reconstruct the application’s interface, the Loom
viewer requires the video that includes visual responses as well
as the action tree in JSON format. Then, the viewer essentially
provides out-of-order playback of the constructed Loom video,
based on user interactions.

Initially, when the viewer is opened, it traverses the action
tree and creates an invisible HTML SVG object for each of the
targets that the creator has made. The SVG object takes the shape
of the target using the shape attribute in the corresponding tree
node. These SVG objects will be responsible for handling user
interactions. Then, based on the actions of the targets, appropriate
event handlers are set up. For example, consider a target with the
click action and a respective position P and shape S that describes
the selected area in the application. To add this target, Loom adds
an invisible SVG element in the DOM with the position and shape
of P and S. Loom then adds a Javascript “click” handler. The SVG
element is then associated with its node in the action tree using
a hash table. When the SVG element is clicked on, it finds the
connected node in the tree, takes the frame number associated with
the node and seeks the Loom video to the corresponding frame
number. Consequently, the image shown to the user is the same as

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a) (b) (c)

Fig. 5: (a) The Loom viewer is shown within the browser. The right toolbar provides a mini-map that shows the position and shape
of interactive elements. (b) shows the usage of the hints toggle button, highlighting interactive elements. (c) Searching through target
descriptions populates a list of possible visual elements in the toolbar. Clicking on a target makes Loom navigate to the appropriate
application state and highlights the searched target with a ripple effect (in blue).

what they would have seen if they had interacted with that button
in the original visualization.

Although an SVG element is created for every target, not all
targets should be interactive at all times. For example, the options of
a dropdown should not be available before the dropdown is opened
(clicked on). As another example, the SVG elements created for the
states in the Tableau example should only be clickable if the user
has previously activated the map visualization. In other words, an
application state should only become accessible if its parents have
been acted on beforehand. Loom handles this using the concept of
state machines.

In the reconstruction stage, the action tree is converted to a
state machine. The conversion between the action tree model and
the state machine is done using the following rules.

1) An application state is created for every node in the tree
2) A transition is created between every state S and its

children in the tree. The condition of the transition is
set to the action belonging to the child node

3) A two-way transition is created between every two leaf
nodes that have the same parent

Within the state machine, every state can be reached if its
parent is the current state and its action is executed. Additionally,
the root of the tree can always be accessed if the user clicks on
anywhere outside of other targets. This is so that users can continue
interacting with the system once they have reached a leaf node.

The number of SVG elements that handle interaction can grow
very quickly depending on the complexity of the visualization.
Additionally, some of the SVG elements can overlap on the screen
in condense visualizations. In this case, elements that are on
top prevent bottom elements from receiving user events such as
clicking. The state machine solves this issue by raising the elements
that should be accessible and lowering those that should not be
accessible. This is done through CSS by changing the z-index
style attribute of the elements.

3.3.1 Guided Interaction and Provenance
A user may choose to not capture the entire visualization application
and only specify portions of it. This means that images shown to
users may have inactive sections. The Loom viewer provides several
tools that hints at what is and what is not interactive. Figure 5a
shows the Loom viewer in the browser. The right panel is added by
Loom. The panel includes a mini-map showing a gray overview of
interactive regions. Additionally, a hints toggle button is provided.

When hints are turned on, interactive regions are highlighted in the
visualization (Figure 5b).

Having captured the states and elements of a visualization
creates a unique opportunity for Loom at runtime. The panel
includes a search tool with which users can search through names
and descriptions of UI elements using fuzzy searching [42]. When
a user clicks on a search result, Loom switches to the appropriate
application state and draws the user’s attention to the element they
searched for with a ripple effect (Figure 5c). The state machine
switches to the parent state of the element so that the user can
choose to interact with the element or not.

3.4 Typical Creator Workflow

To create the action tree that describes possible user interactions
with a visualization, Loom requires the specification of every
interactive element in the application that the creator of the
recording wants to include. We call these elements “targets”.

Rather than having the creator script the interface manually,
such as with a general purpose programming language, Loom
shows the creator the underlying application and allows them
to define the steps visually and intuitively. This is done through
Loom’s Overlay Application (LOA).

When the creator starts LOA, they are presented with a semi-
transparent overlay like the one shown in Figure 6. LOA allows
the creating to visually see the application and define areas for
various targets. These targets have an associated shape defining
their position and area, and an action property that specifies what
event they perform.

LOA supports rectangles, circles and complex polygons as
target shapes. Created targets can be selected using a selection
tool. Every target is accompanied by a settings menu where their
properties can be set in. The menu appears in the toolbar whenever
a target is selected. If multiple targets are selected, all of their
properties can be edited at the same time through the same menu.
In other words, the changed property (e.g. the targets’ parent)
changes to the same value at the same time. This simplifies editing
a large number of targets. Loom’s toolbar is shown in Figure 7
along with a property menu for a selected target.

3.4.1 Assisted Target Specification
As the creator adds more targets, LOA’s display can become
cluttered, making subsequent selections difficult. To organize these
selections, LOA provides workspace tabs (shown in Figure 7).

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 6: Loom provides an overlay application (LOA) that allows
users to select different parts of their visualization and tell Loom
how it should interact with each component. These selections are
then used by Loom to construct an action tree that represents the
possible interactions with the application. In this figure, the states
of the US are target components selected in red.

This way, creators can use each workspace for a specific part
of an application. To LOA, all workspaces still define the same
visualization. This means that parent target relationships can be
specified across workspaces.

LOA also assists creators in specifying large numbers of UI
components with a suite of tools, described in the following.

• Grid Selection. In many user interfaces, menu items are
horizontally or vertically distributed. The grid selection
tool simplifies defining a series of rectangular targets based
on a single outer rectangle selected by the user and the
number of rectangles to automatically create in the X and
Y directions.

• Magic Wand. Visualization elements can sometimes have
complicated shapes making them difficult to select (e.g. a
state in the US map). The magic wand tool uses a flood
fill algorithm [43] to select a component, based on its
boundaries and color. The states in Figure 6 were selected
using this tool.

• Smart Selection. Visualizations can sometimes have hun-
dreds of visual components. The smart selection tool uses
a contour detection algorithm and automatically selects
distinct visual elements. The user can then edit or delete the
elements as needed. The magic wand and smart selection
tools work by taking a screenshot of the underlying
visualization, applying their respective image processing
method to the image, and adding the selections to LOA.

• Copy Tool. UI elements can act differently depending on
which target was interacted with before, meaning that the
same UI elements can have multiple parents. For example,
depending on the value of a radio button, the states on a
map might show different information upon hovering. This
necessitates adding multiple targets for the same area. The
copy tool simplifies this. A user can select a series of targets
and by clicking the copy button, new targets of the same
shape will be created in a new workspace.

Using LOA on our Tableau example, the creator draws a
selection box around the two buttons at the bottom of the screen
and sets their actions to “click”. A default name is automatically
associated with the selections. The creator also has the option to

change those names. In the Tableau application, the creator then
navigates to the “Overview” map visualization. Using the Loom
overlay, they then select the physical position of each of the states
on the map and set the action to “hover”. To convey the hierarchical
aspect of the tree, they additionally set the parent node of each of
the state selections to the Overview button. This means that the
states are only hoverable if the Overview button had been clicked.

To add the bargraph visualization, the creator navigates to the
page in Tableau. Using LOA, they then select the portion of the
screen that includes the bargraph, and set the action to scroll. By
now, the resulting overlay includes all of the selections for our
example (Figure 6).

By default, Loom supports several action types such as click,
hover, brush, 3D rotation, and sliding. Advanced interactions can be
added by writing custom actions in small scripts and are discussed
in Section 3.5.

3.4.2 Browser Extension for Specifications
Some visualizations may have many interactive elements and
manually selecting them is tedious. For cases when the visualization
is web-based, Loom provides a browser extension that assists
users in the specification phase. The creator can specify where in
the DOM their visualization is and what type of action they are
interested in. Then, the extension parses the DOM and returns a
configuration file with all of the targets that were found along with
their SVG shapes. This file can then be imported in LOA for further
editing and enhancement.

The browser extension works by extending the DOM and
modifying the “Element” prototype [44] to keep track of the event
listeners that the original visualization developer has added. After
the page loads, our browser extension then traverses the DOM
looking for objects that have event listeners and adds them to
the configuration file along with the type of event that the targets
support. A JSON version of the configuration is then automatically
downloaded to the user’s computer.

3.4.3 Extending Typical Videos
In addition to shareability, encoding visual responses in a video
format has also allowed us to enrich traditional videos with
interactive components. Resulting videos from this process start
with a typical recording showing users using and describing a work.
The video then stops and allows the user to interact with portions of
the application. Essentially, such videos consist of an initial in-order
playback of frames and then an out-of-order playback by Loom’s
viewer based on user interactions. This is particularly useful for
submitting data analysis and visualization work to conferences,
competitions, and as tutorial materials in general.

The video extension option is available as a menu item in LOA,
where users can browse a traditional video that loom prepends
to the Loom object when in the construction phase. When users
append a Loom recording to a traditional video, Loom shifts the
frame no attribute of each node in the action tree by the number
of frames in the traditional video. The Loom viewer starts by
playing the video first until the first frame no in the action tree is
reached. It then stops and waits for user interactions.

3.5 Extending Interactions
Visualizations include interactions that are much more complicated
than simply clicking and hovering over visual elements. Loom’s
interactions can be extended with custom plugins. A Loom plugin

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 7: Loom’s toolbar is shown. (a) shows the selection menu supporting circles, rectangles, and polygons, as well as three assistive
selection tools. (b) shows the properties of a selected target. The first textbox contains the name of the target. The second textbox contains
the description. Two dropdowns receive the parent state and the action of the target from the user. In the current toolbar, two workspaces
are opened by the user.

consists of two scripts. The first script tells Loom how to interact
with a visual element whose boundary is defined by the user’s
selection box. In other words, it is essentially a DO ACTION
function. The second script tells Loom how to handle interactions
in the browser and map them to the appropriate frames in a Loom
video. Here, we give an example of how we implemented a plugin
for a slider action and a brushing action. Plugins can support even
more complex interactions. Section 4.2 explains how we added a
plugin for 3D rotation around scientific visualizations.

Consider a slider in a visualization with its knob moved to the
left. Given the position and area of a user’s selection, a simple slider
action moves the mouse to the inner side of the selected rectangle.
It then performs a click event, holds the slider knob, and moves
it incrementally to the right. At every defined interval, it takes a
screenshot. In Loom’s viewer, a DOM element is automatically
created for event handling as mentioned in Section 3.3. The plugin
for the slider sets a Javascript drag event on the DOM target
element. Then, based on the position of the mouse in the target, it
seeks the Loom video to the correct frame.

Brushing is a common interaction in visualization applications.
Consider a rectangular brushable area A. Users can pick a location
in A and press the mouse button. They can then drag the mouse
elsewhere within A and finally release the mouse. They have
essentially selected a box S that can be defined with a start and an
end position. To support brushing, the brushing plugin discretizes
the interaction. In other words, it divides area A horizontally and
vertically into a set of cells. It then starts by capturing every
possible combination of selections for the divided cells. For n cells
(
√

n columns and
√

n rows), a total of n2 selections can be made.
For example, an area that is divided into 16 cells (4 columns and
4 rows) leads to 256 different selections. The captured frames are
then linearly indexed and added to the Loom object. In Loom’s
viewer, a DOM element is created for handling the brushing. The
handler registers mouse press and releases, calculating the cells
encompassed by the user’s brushing. Based on the starting cell and
ending cell of the selection it re-calculates the linear index of the
suitable frame and seeks the Loom video to the frame.

This technique can be used to support many other interactions
such as panning, scrolling, dragging, etc. The general mechanism
is to capture possible image responses from the visualization
and index them linearly, and finding the linear index based on
interactions in the viewer to seek to the correct frame. Loom’s
current code-base includes support for clicking, hovering, sliding,
brushing, and 3D rotation.

3.6 Control of Privacy
Typically, the control of privacy is related to the data. Many
visualizations that could be public are not shared, simply because

their data sources cannot be shared due to various regulations
and policies. Sometimes, we see non-interactive visualizations of a
protected dataset, but never see an interactive version online, simply
because the website would require direct access to the dataset.

Separating a visualization from its data creates an opportunity
to look at the privacy and security aspect of visualizations. An
interactive Loom visualization only contains images, making it
safer to share. Additionally, it is possible to encrypt certain frames
and only enable them for authorized users, providing a finer control
on privacy.

In our current prototype, Loom provides a command-line
program that uses AES encryption to encrypt video frames.
The creator of the video can select application states using a
query on their target description and choose to encrypt those
frames. The frames are extracted from the video into a separate
compressed video file, that is then encoded using AES. Within
the original Loom video, the frames are substituted with black
images. The application states are also tagged in the action tree
as unavailable. Hence, the remaining Loom video prevents the
extracted interactions, unless patched with the decrypted file.

Loom uses the OpenSSL implementation of AES, however
other types of encryption techniques can also be used. Loom’s
encryption is currently provided as a command line program.
A sample command for encrypting the application states that
have to do with the “map” keyword in the Tableau example can
be ./encrypt.sh loom.mp4 map <password>. The password
must be provided later for decryption.

While a data-connected visualization can also encrypt its
dataset, it will be required to decrypt all or most of it at runtime to
create the interactive visualization. However in Loom visualizations,
a frame will only need to be decrypted if the user has authorization
to view it.

4 CASE STUDY

Loom’s approach to capturing visualizations is software-agnostic
and can support various types of visualizations whether run on
desktops or on the web. In this section, we show examples of
Loom capturing both information-visualizations, and scientific
visualizations. Additionally, we discuss the tools a user would use
in LOA in order to capture such visualizations.

4.1 Capturing Information Visualizations

4.1.1 Tableau
Figure 8 shows a more complicated version of the Tableau
superstore example in Section 3. The final Loom object included
72 frames with an interactive US map visualization, 10 tabs with

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

various static visualizations, and a dropdown with 3 buttons. The
resulting object had a size of 2.6MB at a resolution of 2560x1600.
In another example, we also captured a scatterplot with support for
brushing. The brushable area was divided into 6 cells across and 6
cells down automatically by LOA. The resulting object included
1368 frames with a size of 6.3MB.

To capture the tableau examples, we used the rectangle tool in
LOA for the tabs, and the dropdown. The scatterplot area was also
a single rectangle with its action set to “brushing”. The interactive
map included irregular areas, so we used the magic-wand tool and
simply clicked on each state once to create a target for it.

Fig. 8: A Loom object of the Tableau superstore dataset is shown
in the browser. An interactive map and clickable tabs are shown in
(A). A functional dropdown that changes the order of the data is
shown in (C). Three different line graphs can be picked in (D). The
action tree of the Loom object can be seen at the bottom. All of the
interactions resulted in a 2.6MB file with 72 frames at a resolution
of 2560x1600.

4.1.2 Online Visualizations
While online visualizations are already shareable, they are occa-
sionally temporary, especially when they rely on server-side code
for retrieving or processing data. For example, visualizations used
in online data journalism are often bound to a news agency’s
servers and can be taken down at any point. More importantly,
some technologies become obsolete and the visualization created
with them become unusable. One example is the discontinuation of
Adobe Flash and its lost support in modern browsers. Throughout
the years, many visualizations have been created using Adobe
Flash. Loom recordings can provide a way to save, store, and
share portions of such applications. This speaks to the “sharing
with the possibility of archiving” aspect of Loom since sharing

digital information inherently surrenders the control on when the
information will be used by others. Figure 9 shows LOA on top of
a Flash-based information visualization from the Senseable City
Lab at MIT [45].

The visualization shows medical record data. The circular key-
words in the visualization have been captured with the assistance of
the smart selector. The complete Loom object includes 336 targets
created in 3 workspaces. The size of the Loom object is 4.2MB.

Fig. 9: The Loom Overlay Application is shown on top of an Adobe
Flash visualization. The Loom object includes 336 selected targets
and has a size of 4.2MB.

While the smart selector simplifies capturing a large number
of elements, it can still be time-consuming. However, for web
visualizations that utilize DOM elements we can use Loom’s
browser extension as described in Section 3.4.2. Figure 10-right
shows a visualization from the New York Times [46], which has
been captured using Loom and re-opened in a Chrome browser.
The complete graph in the visualization has 628 interactive nodes
that highlight connected neighbors when hovered on. The size of
the resulting Loom object is 5.5MB. Figure 10-left exposes the
boundary of the selections from the browser extension.

Fig. 10: UI targets have been automatically captured and high-
lighted in red using Loom’s browser extension for the 2014 Soccer
World Cup visualization from the New York Times (left). The
Loom object has recreated the interactive experience in the Loom
viewer (right). The visualization no longer depends on the original
website or the data source, yet is fully interactive.

4.2 Capturing Large Scientific Visualizations
To showcase Loom’s capability on capturing interactions with
scientific visualization, we picked the Paraview application as a
subject, and opened a volumetric heptane dataset in Paraview. The
dataset had a size of 105MB. Figure 11 shows Paraview with the
heptane dataset reconstructed within a browser.

One of the most widely used types of interaction in scientific
visualization is 3D rotation around an object. To support this, we

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

added a custom action as an extension. In the capture stage, the
action simply uses the mouse to exhaustively drag around an object
in Paraview in an organized way. The action first rotates the object
so that the camera looks at the zenith. It then rotates the object
around the X axis towards the nadir. Loom takes screenshots along
the way. Going from zenith to nadir once spans 180 degrees. The
action script then re-centers the object, and incrementally rotates
the object along the Y axis and continues the first step again. This
process continues until the complete object has been captured.
Figure 11 contains two fully rotational targets in the middle of the
screen.

In cases where one has access to the underlying application’s
API, one can rotate the camera or the object with incremental
angles in the custom action script. However, in the case of this
example, we aimed for an application-agnostic way of capturing
the rotations around an object. Due to this lack of access to the
underlying application in this case, we initially measured how many
pixels the cursor must travel to complete 180 degrees around the
object in our Paraview instance, and then used this to complete the
rotations in our custom script. Our action script takes 500 images
around an object. That is 20 intervals around the object, each of
which includes 25 images from the zenith to the nadir of the object.

In the reconstruction stage, the extension implements a standard
arcball algorithm that maps mouse movements to the 500 captured
images based on the yaw and pitch of the arcball algorithm. In our
example with Paraview and the heptane dataset, we included two
sets of rotations, one for a volume rendering and one for a surface
rendering. Figure 11 shows the reconstructed Paraview interface
within a Chrome browser. What the user sees in the browser is a
single frame of the Loom video showing a screenshot of Paraview.
Clicking on options B, and C switch between volume rendering
and surface rendering. For each option, the rendering in the middle
of the screen updates appropriately and can be rotated. As a user
drags the mouse cursor on the rendering, their mouse movement is
converted to angles using the arcball algorithm. The angles are then
mapped to the appropriate image among the 500 captured images
from the object, and the image is shown to the user. It is important
to note that this is a quantization over the possible rotations around
the data and is less smooth than the original experience. However,
it stands as an example of complex interaction reconstructed in
the browser using Loom, independent of the original data and
application. The final recording was approximately 10MB in size.

5 RESULTS AND DISCUSSION

In contrast to typical videos, subsequent frames in Loom record-
ings are extremely similar to one another. This results in great
compression of the frames and small sizes. Figure 12 compares the
compressed and uncompressed versions for two Loom recordings
that included volumetric visualizations in Paraview. We can see that
Loom recordings are 38 times smaller when compressed, compared
to the raw images.

The size of Loom recordings change not based on the size of the
visualized data, but by the amount of interaction that a user needs.
This provides an alternative control on the size of visualizations.

Based on the definitions in [21], an interaction is an action by
a user with an intent to change the state of an application. Every
frame in a Loom video is a new visual response to a state change.
Therefore, to quantifiably measure the amount of interaction Loom
provides, we consider each frame an interaction.

Fig. 11: A reconstructed version of the Paraview interface in the
Chrome browser. In this example, the volume can be freely rotated
using Loom’s arcball extension (A). The two tabs at the top (B, C)
change between volume rendering and surface rendering modes.
The Loom object for these interactions is approximately 10MB.

Fig. 12: The effect of H.264 compression on two Loom objects is
shown. The size of the object is at a minimum, 38 times smaller
than the raw images. This is mainly due to the similarity between
consecutive frames.

Although increasing the number of interactions also increases
the size of Loom recordings, it can also help with video com-
pression. In Table 1, the Loom video size and the number of
interactions for five different test cases is shown. Additionally, the
KB/Interaction ratio shows how much an interaction is taking space
in the Loom recordings. The Tableau examples have much less
interaction and subsequently less number of frames. However, their
KB/Interaction ratio is much larger than the Paraview examples
that compress better. This is simply because the frames that involve
3D rotation are not drastically different from one another.

In the Table, we can also see the effect of adding new types
of interactions. The last row shows an example that includes a
clipping interaction that clips a surface rendering by sliding the
mouse. The added detail of the surface renders has affected the
KB/Interaction ratio.

Frame encryption also affects file size. While Loom compresses
extracted frames first and then encodes them with AES, the size of
the Loom video plus the size of the encoded file are larger than the
original unencrypted Loom video. In our tests, the resulting two
files were approximately 1.1 times larger than the original Loom
video.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 1: Results of comparing a Loom object’s video size and the number of interactions it provides (measured as new frames). The
similarity between frames in cases where there is more interaction has contributed to how well the video compresses. In all cases, the
cost of adding an interaction to the object was less than 40KB.

Test Case Loom Video Size (MB) Number of Interactions KB/Interaction
1) New York Times 5.5 628 8.96
2) Tableau Superstore 2.6 72 36.97
3) Tableau Superstore (with brushing) 6.3 1368 4.6
4) Senseable City Lab (Adobe Flash) 4.2 336 12.5
5) Paraview (two 3D rotations) 9.9 1003 10.10
6) Paraview (two 3D rotations + clipping) 14 1015 14.12

TABLE 2: Comparison of recording effort and the number of
specified target elements. Note that the difference between the
Tableau Superstore example with and without brushing is 1296
frames but only one extra target for the user. Examples with more
targets however, take more user specification time such as the
Adobe Flash example.

Test Case # Targets Avg. Time (m)
Senseable City Lab (Adobe Flash) 336 18.16
Tableau Superstore (with brushing) 73 10.2
Paraview (two 3D rotations) 6 3.41

Despite these relationships, it is important to note that in all of
our tests, the ratio was always below 40KB per interaction.

In addition to size, it is important to look at how long it takes for
Loom to record visualizations. Loom’s UI-bot periodically waits
after every interaction in order to let the underlying visualization
update if it needs to. Therefore, generating Loom recordings takes
time depending on the number of interactions. The most time
consuming case in our examples was for the Paraview object
with two full 3D rotations and a surface clipping slider action.
Loom’s UI-bot took approximately 40 minutes to capture the
interactions. That is less than 2.5 seconds wait time between every
two interactions. The duration can be changed in Loom.

5.1 Recording Effort and Feedback
As with creating videos, creating Loom recordings can also take a
considerable amount of time and effort by the creator. Interested
in how long UI-specification takes for various visualizations, we
asked 3 computer science students to use LOA and specify the
states for 3 examples in this paper (test cases 2, 4, and 5 from
Table 1). We then timed their work. Every student worked on two
examples.

Before the experiment, we took 15 minutes to explain 1) how
Loom works, and 2) the example they would capture. On average,
the Adobe Flash example took 18.16 minutes and the students
were able to specify approximately 376 states. They initially used
the smart selector to automatically select the different circular
targets and used the circle tool to specify some that had not been
captured automatically. The Tableau example (with 72 states) took
10.2 minutes on average and the Paraview example, took the least
amount of time for specification (only 3.41 minutes) since it only
required a few rectangular selections.

When asked about their experience in using LOA, one of the
students mentioned that their experience with imaging software
such as Adobe Photoshop helped them recognize and use LOA’s
toolset. Additionally, another student noted that LOA can signifi-
cantly benefit from keyboard shortcuts such as hitting the “Enter”

key for approving a selection instead of clicking on the approve
button which can be tedious.

The amount of time it takes for users is not necessarily cor-
related with the number of interactions. Complicated interactions
such as brushing and 3D rotations for example, only take a few
mouse strokes. Recording effort mostly correlates with the number
of UI targets in the application as that is what the users are truly
selecting (Table 2). While smart tools in LOA alleviate this task,
it can still be time consuming to correct or adjust the automatic
specifications for a large number of targets.

5.2 Discussion
5.2.1 Limitations
Capturing an interactive experience without the original code and
data can induce some limitations on the types of interactions
possible. Similar to videos, while many application states can be
captured, there can only be a finite amount, making it impossible to
completely replace Turing complete code. Therefore, it is important
to discuss what is and what is not possible to capture with Loom.

Many works have introduced interaction taxonomies and
organized the types of interactions used in visualizations. With
regard to the taxonomical dimensions of interaction [48], Loom
supports stepped, passive, and composite interactions and does not
support continuous. As mentioned in Section 3.5, some continuous
interactions can be imitated with discrete alternatives. For example,
scrolling can be discretized such that the application scrolls in steps.
We classify Loom’s interaction types with regard to the taxonomy
of Brehmer et al. [47]. Table 3 shows the results. In essence, Loom
supports interactions that are pre-determined and discrete.

While this taxonomy defines the theoretical limits of Loom, in
practice, exploratory visualizations such as zooming and navigating
maps can exponentially grow the number of frames. For example,
the discretized brushing in our Tableau example quickly grew the
number of frames to 1368 from 72. However, it is important to
note that Loom’s goal is not to fully replicate a visualization, but to
provide a solution for sharing interactive recordings without their
data, and is more suitable for explanatory visualizations.

5.2.2 Suitability for Visualization vs. Other Applications
Visualization applications often rely on external and pre-defined
data sources. This creates a unique opportunity for systems like
Loom. Loom cannot be used with general utility applications such
as Microsoft Word simply because their data source is provided by
users (i.e. text) at runtime and is not pre-determined. Moreover, the
types of interactions with visualizations are well- and pre-defined,
making capturing much simpler. General applications on the other
hand support interaction with components that are created on the
fly based on user data.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 3: Loom’s support for different types of interactions based on the taxonomy of Brehmer et al. [47] is shown. In general, discrete
interactions can be captured, while continuous and undetermined interactions cannot be captured by Loom.

Taxonomical Unit Support Comments
Select 3 Discrete Selections Supported
Navigate 3 Navigations such as panning are supported if discrete
Arrange 3 -
Change 3 -
Filter 7 Filtering is usually undetermined (based on user input)
Aggregate 7 Aggregation typically exponentially increases the state space

6 CONCLUSION

In this paper, we presented Loom as a system that allows users to
create interactive recordings of visualizations that can be shared
without the original data or software. Loom essentially bridges the
gap between dataless but non-interactive sharing of visualizations
(such as images and videos), and data-dependent but interactive
sharing (such as sharing the data source and application itself).

We showed examples of using Loom to capture several types
of interactions (e.g. clicking, hovering, sliding, brushing, and 3D
rotation) together with feature-rich scientific visualization, and
function-rich information visualization. We then discussed the
types of interactions that Loom supports with regard to well-known
interaction taxonomies and reported on the timings and feedback
of users.

Resulting Loom objects are fully interactive but have zero
dependency on the original data and software that created the
visualizations. On average, at retina display resolution (2560 x
1600), the Loom objects have an average storage cost far below
50KB/Interaction. The Loom viewer is Javascript based, compact,
and runs within any modern web browser.

Our current work has a few limitations. First, even though we
have tested on the types of visualization and confirmed efficacy,
it’s not yet conclusive to what level Loom will work for all
visualization components that exist. Some types of interaction can
be harder to automate. Integrating more automatic and AI-assisted
approaches could be a path forward. Second, Loom is good for
sharing explanatory visualizations, as opposed to exploratory. The
latter often explores a large exponential space that quickly grows
in size when rasterized. We plan on tackling these directions in
future works.

Loom’s use of standard H.264 allows recordings to be appended
to traditional videos. While the current version supports appending
one traditional video to another Loom recording, more complex
combinations of interaction + video could be further studied. More-
over, the impact of interaction + video on a viewer’s experience of
visualization sets another direction for future works.

Additionally, it is worth noting that Loom is a light-weight
solution that can be used for asynchronous distributed collaboration,
reproducing user experiences, and/or archiving. Loom itself does
not address provenance, although it could be used together with
other provenance systems. Further exploring this possibility should
be a fruitful direction of future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers of
this and previous versions of the manuscript for their valuable
comments and suggestions. The authors are supported in part by
NSF Award CNS-1629890, and USDI-NPS P14AC01485.

REFERENCES

[1] B. Van der Haak, M. Parks, and M. Castells, “The future of journalism:
Networked journalism,” International journal of communication, vol. 6,
p. 16, 2012.

[2] S. K. Badam and N. Elmqvist, “Polychrome: A cross-device framework
for collaborative web visualization,” in Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces. ACM,
2014, pp. 109–118.

[3] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler,
S. Yeh, A. Mahabal, M. Graham, A. Drake et al., “Immersive and
collaborative data visualization using virtual reality platforms,” in 2014
IEEE International Conference on Big Data (Big Data). IEEE, 2014,
pp. 609–614.

[4] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing big
data issues in scientific data infrastructure,” in Collaboration Technologies
and Systems (CTS), 2013 International Conference on. IEEE, 2013, pp.
48–55.

[5] J. Thomson, D. Adams, and K. Walker, “Metadata’s role in a scientific
archive,” Computer, vol. 36, no. 12, pp. 27–34, 2003.

[6] J. Steele and N. Iliinsky, Designing Data Visualizations. O’Reilly Media,
Inc., 2011.

[7] Z. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis,
and B. O. Palsson, “Escher: a web application for building, sharing,
and embedding data-rich visualizations of biological pathways,” PLoS
computational biology, vol. 11, no. 8, p. e1004321, 2015.

[8] A. Graves, “Creation of visualizations based on linked data,” in Proceed-
ings of the 3rd International Conference on Web Intelligence, Mining and
Semantics. ACM, 2013, p. 41.

[9] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE transactions on visualization and computer graphics, vol. 17, no. 12,
pp. 2301–2309, 2011.

[10] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite:
A grammar of interactive graphics,” IEEE transactions on visualization
and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[11] P. Hunt, P. O’Shannessy, D. Smith, and T. Coatta, “React: Facebook’s
functional turn on writing javascript,” Communications of the ACM,
vol. 59, no. 12, pp. 56–62, 2016.

[12] N. Jain, A. Bhansali, and D. Mehta, “Angularjs: A modern mvc framework
in javascript,” Journal of Global Research in Computer Science, vol. 5,
no. 12, pp. 17–23, 2015.

[13] National Park Service, “Species-Mapper Visualization,” 2019 (accessed
September 12, 2019), https://maps.nps.gov/species/.

[14] Adobe, “Flash & The Future of Interactive Content,” 2019 (accessed Jan
16, 2019), https://theblog.adobe.com/adobe-flash-update/.

[15] J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,”
Queue, vol. 10, no. 2, p. 30, 2012.

[16] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo, “Vistrails: Enabling interactive multiple-view
visualizations,” in Visualization, 2005. VIS 05. IEEE. IEEE, 2005, pp.
135–142.

[17] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for large
data visualization,” The visualization handbook, vol. 717, 2005.

[18] E. T. Stanton and W. P. Kegelmeyer, “Creating and managing” lookmarks”
in paraview,” in Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on. IEEE, 2004, pp. p19–p19.

[19] L. Moreau, “The foundations for provenance on the web,” Foundations
and Trends in Web Science, vol. 2, no. 2–3, pp. 99–241, 2010.

[20] W3C, “An Overview of the PROV Family of Documents,”
2019 (accessed January 23, 2019). [Online]. Available: https:
//www.w3.org/TR/prov-overview/

[21] I. Suriarachchi, Q. Zhou, and B. Plale, “Komadu: A capture and
visualization system for scientific data provenance,” Journal of Open
Research Software, vol. 3, no. 1, 2015.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.2984708, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[22] Y. L. Simmhan, B. Plale, and D. Gannon, “A framework for collecting
provenance in data-centric scientific workflows,” in Web Services, 2006.
ICWS’06. International Conference on. IEEE, 2006, pp. 427–436.

[23] A. Camisetty, C. Chandurkar, M. Sun, and D. Koop, “Enhancing web-
based analytics applications through provenance,” IEEE transactions on
visualization and computer graphics, vol. 25, no. 1, pp. 131–141, 2019.

[24] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical histories
for visualization: Supporting analysis, communication, and evaluation,”
IEEE transactions on visualization and computer graphics, vol. 14, no. 6,
2008.

[25] T. Grossman, J. Matejka, and G. Fitzmaurice, “Chronicle: capture, ex-
ploration, and playback of document workflow histories,” in Proceedings
of the 23nd annual ACM symposium on User interface software and
technology. ACM, 2010, pp. 143–152.

[26] H.-T. Chen, L.-Y. Wei, and C.-F. Chang, “Nonlinear revision control for
images,” in ACM Transactions on Graphics (TOG), vol. 30, no. 4. ACM,
2011, p. 105.

[27] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel, “Query-driven
visualization of large data sets,” in VIS 05. IEEE Visualization, 2005., Oct
2005, pp. 167–174.

[28] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu, “Visualizing
temporal patterns in large multivariate data using modified globbing,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1467 – 1474, 2008.

[29] J. Zhou and M. Takatsuka, “Automatic transfer function generation using
contour tree controlled residue flow model and color harmonics,” IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
1481–1488, 2009.

[30] B. P. Nguyen, W.-L. Tay, C.-K. Chui, and S.-H. Ong, “A clustering-
based system to automate transfer function design for medical image
visualization,” The Visual Computer, vol. 28, no. 2, pp. 181–191, 2012.

[31] M. Raji, A. Hota, R. Sisneros, P. Messmer, and J. Huang, “Photo-Guided
Exploration of Volume Data Features,” in Eurographics Symposium on
Parallel Graphics and Visualization, A. Telea and J. Bennett, Eds. The
Eurographics Association, 2017.

[32] M. Raji, A. Hota, and J. Huang, “Scalable web-embedded volume
rendering,” in 2017 IEEE 7th Symposium on Large Data Analysis and
Visualization (LDAV). IEEE, 2017, pp. 45–54.

[33] M. Raji, A. Hota, T. Hobson, and J. Huang, “Scientific visualization as a
microservice,” IEEE transactions on visualization and computer graphics,
2018.

[34] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
tersen, “An image-based approach to extreme scale in situ visualization
and analysis,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press,
2014, pp. 424–434.

[35] F. Lamberti and A. Sanna, “A streaming-based solution for remote
visualization of 3d graphics on mobile devices,” IEEE transactions on
visualization and computer graphics, vol. 13, no. 2, pp. 247–260, 2007.

[36] J. Rumbaugh, I. Jacobson, and G. Booch, Unified modeling language
reference manual, the. Pearson Higher Education, 2004.

[37] D. Harel, “Statecharts: A visual formalism for complex systems,” Science
of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[38] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in European Conference on the
Applications of Evolutionary Computation. Springer, 2010, pp. 100–110.

[39] R. G. Dromey, “Formalizing the transition from requirements to design,”
in Mathematical frameworks for component software: Models for analysis
and synthesis. World Scientific, 2006, pp. 173–205.

[40] “Software Container Platform - Docker: https://www.docker.com/,”
2018 (accessed October 14, 2018). [Online]. Available: https:
//www.docker.com/

[41] W3C, “SVG Specifications 2.0,” 2019 (accessed September 8, 2019).
[Online]. Available: https://www.w3.org/TR/SVG2/

[42] K. Risk, “Lightweight fuzzy-search, in JavaScript,” 2019 (accessed
January 23, 2019, https://github.com/krisk/Fuse.

[43] S. Torbert, Applied computer science. Springer, 2016.
[44] M. Foundation, “HTML’s Element Object Specification,” 2019 (accessed

September 13, 2019), https://developer.mozilla.org/en-US/docs/Web/API/
Element.

[45] “Senseable City Lab - MIT,” 2019 (accessed January 21, 2019). [Online].
Available: http://senseable.mit.edu/

[46] NYTimes, “The New York Times visualization on the
2014 World Cup,” 2018 (accessed March 28, 2018),
https://www.nytimes.com/interactive/2014/06/20/sports/worldcup/
how-world-cup-players-are-connected.html.

[47] M. Brehmer and T. Munzner, “A multi-level typology of abstract
visualization tasks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2376–2385, 2013.

[48] R. Spence, Information Visualization: Design for Interaction, 2nd Ed.
Prentice Hall, 2007.

Mohammad Raji Mohammad Raji received a BS
and an MS in Computer Engineering from Razi
University, Iran in 2008 and 2012, respectively.
He received his PhD in Computer Science from
the University of Tennessee, Knoxville, in 2019.
His research interests include data intensive visu-
alization system architecture, web-based data
visualization systems, and deep learning. He
joined Google as a full-time technical staff in
2020.

Jeremiah Duncan Jeremiah Duncan received
his BS in Computer Science from the University
of Tennessee, Knoxville, where he is currently
a PhD student. His research interests include
machine learning, data visualization, and mixed
reality.

Tanner Hobson Tanner Hobson received his
BS in Computer Science from the University
of Tennessee, Knoxville, where he is currently
a PhD student. His research interests include
distributed computing, mixed reality visualization,
and web-based systems architectures.

Jian Huang Jian Huang is a professor in the De-
partment of Electrical Engineering and Computer
Science at the University of Tennessee, Knoxville.
His research focuses on data visualization and
analytics. He received his PhD degree in com-
puter science from the Ohio State University in
2001. Dr. Huang’s research has been funded
by National Science Foundation, Department
of Energy, Department of Interior, NASA, UT-
Battelle, and Intel.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:29:19 UTC from IEEE Xplore. Restrictions apply.

