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ABSTRACT 
Continuous maintenance of large fleets of building energy models (BEMs) is a new challenge that may soon approach economic parity for large institutions 
as data and modeling connectivity become streamlined. In the past, BEMs have mostly been used for analyses during design with little or no reuse of the 
model. The Energy Independence Security Act (EISA) of 2007’s requirement to complete energy and water evaluations for federal facilities is changing 
this. EISA requirements can be met through performance of ASHRAE energy audits that allow BEMs to be used for identifying energy savings 
opportunities and energy use breakdowns. Several years ago, Sandia National Laboratories (SNL) developed a fleet of 121 BEMs for site-wide energy 
assessments. Applications for this fleet has now been expanded to EISA compliance. The authors propose maintaining the BEM fleet on a 4-year cycle. 
In this process models undergo a quality check (QC) and recalibration whenever a building energy audit is performed for its corresponding building. For 
recalibration, auto-calibration technology is being used. This paper outlines the first year of efforts to construct a streamlined process and results for the first 
5 models. The first BEM underwent both manual and auto-calibration for a direct comparison. Manual calibration incurred more cost and required more 
time from staff members. Auto-calibration required significantly less effort, slightly less cost, and resulted in slightly better accuracy. ASHRAE Guideline 
14-2014 was met by 3 of the 5 buildings after auto-calibration. Even so, significant improvements to Normalized Mean Bias Error (NMBE) and 
Coefficient of Variation for Root Mean Square Error (CV(RSME)) were achieved for all five buildings. Data and model quality issues are suspected as 
causes for the non-compliance rather than inadequacy of the auto-calibration procedure.  Many improvements to the processes used to prepare data and 
models have been identified including issues that require major changes to SNL’s energy tracking infrastructure.  

INTRODUCTION 

Potential markets for Building Energy Models (BEM) are expanding and rapidly changing (Hong et. al., 2018). 
This includes applications for large fleets of BEM on existing buildings (Villa et. al., 2017). Meanwhile, existing energy 
efficiency practice’s profitability may be slowing (Stuart et. al., 2018) and may benefit from innovative uses of BEMs. 
Many efforts are underway to automatically generate entire campuses and cities through urban-scale building energy 
modeling techniques (Nagpal and Rienhart, 2018; ORNL 2018; NREL, 2018; Chen et. al., 2017; Reinhart and Davila, 
2016) yet such efforts are mostly accurate on a larger scale than individual building energy assessments. In comparison 
to urban scale planners, institutional planners often need asssessments for large fleets of buildings with accuracy for 
each building. Institutions also often have access to data that has the potential to keep BEM accurate. Institution-scale 
research efforts therefore require focus on the maintenance of large fleets of BEM that leverage automation as much as 
possible to reduce modeling efforts.  

SNL created 121 DOE 2.2 BEM from 2012 to 2017 for site-wide assessment of Energy Conservation Measures 



(ECM). The results of these analyses were used to estimate the feasibility of institution-wide energy efficiency goals 
(Villa et. al., 2017). These site-wide assessments are only needed every couple of years. One new application starting in 
2018 has been using the fleet as a resource for compliance to the Energy Independence and Security Act of 2007 (EISA) 
through energy-use breakdown estimates (Fisher, 2014). Legal compliance to EISA section 432 (EISA, 2007) requires 
applicable federal facilities to undergo energy audits every four years. EISA compliance can be met by the American 
Society of Heating, Refrigeration and Air-conditioning (ASHRAE) commercial building energy audit levels one to three 
(ASHRAE, 2011). To do this, the models must produce estimates of the energy and water savings opportunities for 
each building. Unfortunately, an audit of SNL’s fleet in 2016 found only 52% of the models met ASHRAE Guideline 
14 calibration requirements (Villa et. al., 2017). Even though calibration status is not an exact indicator, this result 
probably shows that energy savings opportunities are inaccurate for the fleet. This led to planning for maintaining SNL’s 
fleet of models through a systematic process. The need for methods to reduce workloads for 121 models suggested 
automated calibration techniques might be helpful (Chaudhary et. al., 2016). This in turn led to collaboration for auto-
calibrating the fleet of models. Manual intervention was also planned through quality checks of the model using energy 
audit reports (Villa et. al., 2018). This paper presents the design of a quality check and automatic calibration procedure 
on our BEM fleet that is applied after building energy audits. It then walks through the results for the first five buildings 
involving both quality checks and auto-calibration. 

METHODS 

The preparation of models for auto-calibration is challenging. To reduce the need for modelers to insert new 
expressions in every model, software was developed to automate the process. The DOE2.2 BEMs already had many 
Building Design Language (BDL) expressions and global parameters for ECMs but these were not designed to touch 
every part of the model needed for calibration purposes. Generalized BDL expressions were therefore derived that 
produce no change to the original BDL expressions if calibration parameters are default values. Two types of parameters 
were inserted by the software: multipliers and base-load offset parameters (Villa et. al., 2018). Multipliers have a default 
numerical value of one and output the product of the multiplier and any existing BDL expression. Base-load offset 
parameters are applied to schedules and have a default value of zero. At negative one, the baseload offset stretches the 
schedule to zero baseload. At one, the baseload offset compresses the schedule to baseload equal to peak load as seen 
in Figure 1. The functional relationship to transform any function this way is given in equations (1) and (2).  

 

Figure 1. Baseload offset parameter effects on an hourly load schedule for one day as defined by equation (1). 

 
𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = �

(1 − 𝑝𝑝𝑜𝑜)𝑓𝑓(𝑡𝑡) + 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑜𝑜 1 ≥ 𝑝𝑝𝑜𝑜 ≥ 0
−𝑝𝑝𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛−1(𝑡𝑡) + (𝑝𝑝𝑜𝑜 + 1)𝑓𝑓(𝑡𝑡) −1 ≤ 𝑝𝑝𝑜𝑜 < 0 (1) 
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(2) 



Here, 𝑝𝑝𝑜𝑜 is the base-load offset parameter used by the calibration algorithm, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = max�𝑓𝑓(𝑡𝑡)�, 𝑓𝑓𝑚𝑚𝑚𝑚𝑛𝑛 = min�𝑓𝑓(𝑡𝑡)�.  
Sixteen multipliers and five base-load fraction parameters were designed to alter building envelope, HVAC cooling 

efficiency, equipment schedules, exhaust schedules, fan schedules, heating efficiency, cooling efficiency, heat rejection 
efficiency, infiltration, lighting schedules, occupancy schedules, outdoor air flow, plug loads schedule, pumping 
efficiency, and non-electrical source load schedules (Villa et. al., 2018). The underlying software applies the parameters 
across a broad range of systems and BDL command types. Over fifty-five BDL keywords per building are referenced 
by a total of 255 tunable calibration parameters (13 for Building 1, 56 for Building 2, 49 for Building 3, 70 for Building 
4, and 67 for Building 5). The changes to BEM from insertion of these parameters are extensive with two examples 
shown in Figure 2. The lower example illustrates that existing expressions are preserved. There were approximately 49 
previously defined parameters that were leveraged for site-wide energy assessments when available (number of 
parameters varied by building). Even though it was intended for our software to not alter model output with default 
parameter values, some changes in predicted energy were observed. Investigation concerning why this is the case is still 
underway but BDL’s handling of default and missing values is probably the issue. These differences were deemed 
sufficiently small to neglect. The resulting software can prepare any DOE2.2 model for auto-calibration. 

 

 

 

 

Figure 2 A BDL expression before and after insertion of calibration parameters shows how calibration is 
accommodated or else preserves the original parameter value. 

 
Quality checks (QC) were confined to verification that building-specific details from existing energy audits were 

consistent. The reviewer verified that a BEM could run before and after changes were made. An average of 6 hours per 
building was spent generating a spreadsheet that lists where the model was consistent, areas that were corrected, and 
issues that were not correctable (and why) in the time frame available. The BEM model was also checked for errors in 
modeling methodology with investigation of all output warning messages from DOE2.2. Finally, a list of information 
in the energy audit that could not be usefully applied to the BEM was generated. The reviewer finished the quality check 
by assigning a grade to the BEM: A = ready for calibration, B = ready for calibration but with known issues, C = known 
issues are serious and the reviewer is uncertain whether to calibrate, D = calibrating is not recommended but known 
corrective action may correct issues, F = fundamental flaws exist or DOE2.2 is incapable of simulating the building 
accurately. 

Seventeen buildings were chosen to undergo auto-calibration in 2018 of which five were finished in time for this 
paper. The five buildings are listed in Table 1 which gives the general attributes, calibration status, and QC grade with 
the exception of building 1 whose calibration was completed before QC checking was implemented. The buildings are 
highly complex, have multiple uses that vary sporadically, and many instances of 24-7 operations. 

The calibration methodology used in this study is the Autotune technology (New et. al., 2012). The core Autotune 
capabilities were developed at Oak Ridge National Laboratory over the course of 3 years by leveraging high performance 
computers, and development of a software system for running a suite of machine learning algorithms (MLSuite) on 
these resources in parallel (Edwards, 2013a) composed of proprietary, open source, and computational complexity 
___________________________________________________        

 



Table 1 Building Attributes and Calibration Status 2014 
Building  Description Model Picture from eQUEST®  

Building 1  
Albuquerque 
New Mexico 
Built 1987 

• 3 level 72,200ft2 (6,710m2) Light Lab with pre-
cast concrete panels with exterior metal panels 

• 2 24-7 exhaust systems.  
• Mixed single duct and dual duct  
• 5.42 GWh (18,490 MBTU) electricity 

consumption 2017 
• Calibrated om 2014 to NMBE -2.92% 

CV(RSME) 5.41%. No QC Grade 
 

 

Building 2 
Albuquerque 
New Mexico 
Built 1995 

• 3 Level 98,200ft2 (9,120m2) Light Lab with 
concrete masonry unit construction 

• 2 24-7 exhaust systems 
• Compressed air services  
• 2.26 GWh (7,710 MBTU) electricity 

consumption 2017 
• 2,210 MCF (62,580m3) natural gas used 2017 
• Out of compliance for calibration in 2014. 

NMBE 5.50% CV(RSME) 6.40% QC Grade A 
 

 

Building 3 
Albuquerque 
New Mexico 
Built 1984 

• 2 Level 76,100ft2 (7,070m2) Highbay area with 
office space attached by a skybridge. Mostly 
precast with Double tee structural walls 

• Compressed air services 
• 1.57 GWh (5,360 MBTU) electricity 

consumption 2017 
• 4,047 MCF (114,600m3) natural gas used in 2017 
• Out of compliance for calibration in 2014. 

NMBE 12.05% CV(RSME) 13.00% QC Grade A  
Building 4 
Livermore 
California 
Built 2003 

• 2 Level 71,500ft2 (6,643m2) steel frame office 
building 

• Offices and large conference room center. 
• Small café and dining area 
• 3.91 GWh (13,300 MBTU) electrical 

consumption 2017 
• Not calibrated in 2014. QC Grade B 

 
 

Building 5 
Livermore 
California 
Built 1958 

• 1 Level 32,600ft2 (3030m2) concrete office 
building 

• 4-ply built up cool roof 
• 1.82 GWh (6,210 MBTU) electricity 

consumption 2017 
• 6,050 MCF (171,300m3) natural gas used in 2017 
• Not calibrated in 2014. QC Grade C 

 

improvements (Edwards, 2013b) to artificial intelligence (AI) algorithms Over 300,000 AI algorithmic instances were 
utilized that included the following classes of algorithms: linearly and non-linear regression, feed forward and recurrent 
neural networks, C- and K-means clustering with local models, support vector machines, Gaussian mixture models, 
self-organizing maps, regression trees, time modeling, and genetic algorithms. The best-performing algorithm on a 
benchmark dataset of 20,000 buildings was a custom modification to the NSGA-II algorithm, which resulted in an 



average hourly CV(RMSE) below 4% (Garrett et. al. 2013, Garrett and New 2015, Chaudhary et. al. 2016). More 
importantly, this algorithm used a new ANSI/RESNET standard (ANSI 1201-2016) to quantify the recovery of the 
actual input parameters of the building between 15% and 32%, with better performance achieved with more channels 
of higher-resolution energy and non-energy performance data (New et. al., 2018). The core Autotune algorithm was 
further extended to DOE2.2 simulations required for this study. This included modification of BDL variables and 
scalable parsing of DOE2.2 output reports to enable improved calibration. 

 While not often reported in the literature, there are several practical considerations that many calibration studies 
face including BEM modifications, sensed data cleanup, selection of tunable parameters, properties of those parameters 
(e.g. min, max, distribution, grouping, mathematical constraints), and re-calibration via modifications of these when 
improved comparison data is provided from a calibration. In this study, the original building energy models were 
specified from March 27 – December 31, 2012 and January 1, 2012 – March 6, 2013. For this study, we modified the 
time period to January 1 – December 31, 2017 (the year is not important, but the time series reported needs to align 
with the sensed data). There were several sensed data cleanups, which is an ongoing challenge for many organizations 
with respect to centralizing and providing quality assurance/control of metered data (that may cover multiple buildings 
or overlap measurement boundaries with other analysis). While it is standard practice to calibrate on the last 12 months 
of data, to minimize the odds of a non-routine adjustment, we find comparison of those 12 months to previous years 
of data to be a useful exercise. Building 2 experienced a faulty natural gas meter in June that was detected as anomalous 
compared to the previous three years, so the usage was doubled. Building 3’s electrical use was increased 67% due to 
an anomalous change in operations that is unlikely to repeat in the future. Building 4’s energy use for August – December 
was averaged from previous years due to similar operational concerns. The authors find that most organizations and 
individuals end up re-evaluating the tunable parameters and properties after calibration once the modeled and measured 
data are compared together. Most of the reasoning and selection for the parameter properties used in this study are 
discussed previously (Villa et. al., 2018). We also find providing clear guidance on what is expected in a calibration report 
is useful. For this study, the final report for each building included an interactive report with the following information: 

 
• Documentation of the quality check process with comparison to walkthrough audit data 
• Prominent display of the final NMBE and CV(RSME) values achieved 
• The final building energy model 
• The building energy model before calibration 
• Full details in result files for the final calibrated model 
• Graph providing monthly building energy performance data of electricity/gas (if provided) versus the final 

calibrated building energy model performance 
• Spreadsheet providing all the parameter values determined by the calibration algorithm 
• The Actual Meteorological Year (AMY) weather file corresponding to the time-period in which data was 

collected 
• The measured calibration data used 
• Meta-information regarding the computer used, dates of run, individual who performed the analysis, contact 

information, and additional important notes 
• Graph and data showing yearly end-use break-down by Heating, HVAC cooling equipment, HVAC Fans, 

interior lights, pumps, plug loads, interior lighting, and other loads 
• Short notes concerning whether the end-uses are close to typical end-uses for the building type being evaluated 

Archiving these results provides a permanent record of the analysis that allows direct application to the EISA energy 
audits and creation of a permanent link that allows replication or further investigation as needed. 

 



RESULTS 

For Building 1, the authors began with the original BEM model and a manually-calibrated model. Automatic 
calibration was applied to the manually-calibrated model to determine if it could improve beyond the manual calibration 
and to achieve the most accurate model for assessing energy savings opportunities. However, this calibration-on-top-
of-calibration can lead to further differentiation of model inputs from walkthrough audit data. In addition to addressing 
this concern, the authors sought to determine if automatic calibration of the original model could have saved the cost 
and expense of the manual calibration, especially for matching measured energy use. Building 1 was calibrated using 
hourly data, but accuracy metrics are also shown for daily and monthly in Table 2 to inform how well the method 
generalizes across different temporal resolutions. 

Formal interviews by the authors with individuals holding the job title of “energy engineer” that typically perform 
calibration services for Energy Service Companies (ESCOs) have identified an average of approximately 24 hours to 
manually calibrate a building of this size at an average fully-burdened rate of $130/hour. Using this assumed hourly rate, 
we show improved calibration performance and a savings of approximately $1,000 (29%) for this building and 12-20 
hours in turn-around time. This value grows non-linearly with the increasing amount of sensed data, complexity of 
operations, number of calibration parameters, and the size of the building portfolio being calibrated. 

 
Table 2. Building 1's monthly, daily, and hourly accuracy of the original model, auto-calibration, manual-calibration 

(from original), and auto-calibration (from manually-calibrated) shows generally better accuracy than manual 
calibration, minor cost savings, and increased scalability to cost-effectively address larger portfolios of buildings. 

 

 Original 
Model 

Autotune 
(from original) 

 Manual 
Calibration 

Autotune 
(from manual) 

Monthly utility data 
CV(RMSE) 8.37% 5.22% 

 
5.23% 5.20% 

NMBE 2.66% 0.16% 
 

-1.42% 0.66% 

Daily utility data CV(RMSE) 12.41% 9.11% 
 

8.26% 7.53% 
NMBE 2.66% 0.16% 

 
-1.42% -0.26% 

Hourly utility data CV(RMSE) 19.50% 10.9% 
 

11.54% 9.70% 
NMBE 2.66% 0.16% 

 
-1.42% -0.26% 

Cost 
 

 
$2.5k 

(15 hours, 
compute) 

 
27 

person-hours 
($3.5k at $130/hr) 

$2.5k 
(7 hours, 
compute) 

 
In performing the calibration for all 5 buildings, there were several real-world considerations that were noted as 

part of the analysis. First, most of the tunable parameters selected only affected electrical energy use. While some natural 
gas parameters were added, this was done after-the-fact and had little impact on natural gas energy use. When calibrating 
to items beyond whole-building electrical (e.g. natural gas, water), calibration benefits from significant forethought in 
the uncertainty of the major variables that affect those points of measure. Here, our automated approach to our 
parameter design makes it much easier to adjust the entire fleet as we refine our processes. With regards to natural gas, 
we noted several recommendations including the following: 

 
• Buildings 2 and 3 natural gas base loads are needed for summer and shoulder seasons 
• Building 2 electricity values were unusual for February, July, and September compared to previous years, 
• Building 3 likewise deviated in February and September compared to previous years 
• Building 4 had identical values in July, August, and September compared to the previous year and could be a 

potential copy/paste error in the energy audit report 
• Building 5 had 30 times greater energy consumption for natural gas than the calibrated model with a 77% 

weather-independent base load and 23% weather-dependent (assumed to be space heating) 



• Building 5 results were within 1% on an annual basis but off by as much as 30% on a monthly basis due to 6–
27% lower than measured models results for January-August but 27–33% higher model results for September 
– December with measured energy use falling sharply between July and September. Since no building or 
operational change was noted in the supplied audit, it was conjectured that a model calibrated on only the last 
half of the year may be more valuable going forward. 

 

 

Figure 3. Monthly BEM accuracy pre- and post-calibration. While ASHRAE Guideline 14 is almost exclusively applied 
to whole-building electrical use, future versions are considering submetering, higher-resolution sampling, and 

the (generally) more difficult challenge of matching natural gas or water use. 
  
 To estimate how much change was required to achieve calibration, the percent change across the allowed 

minimum to maximum ranges was calculated for each parameter for Buildings 2 through 5. This resulted in 236 data 
points concerning how much the auto-calibration procedure varied parameters (Figure 4). The resulting distribution has 
an average of 1.56% which we assume is converging to zero and a sample standard deviation of 30.07%.   

 

 

Figure 4. Auto-calibration parameter percent change 

Such a high standard deviation is well beyond the desirable range of adjustment based on the authors’ judgment. 
We hypothesize that it is indicative that the models are not sufficiently configured to represent the real building well. It 
is much more desirable for auto-calibration to tune a model that represents a real building accurately but for which 
unknown efficiencies and variations in schedules require some adjustments. There are many BEM attributes, such as 
thermal zone and HVAC configurations, which are prohibitively diffuclt to alter by auto-calibration. The authors had 
hoped for auto-calibration to achieve system identification of a core set of parameters such as efficiencies, changes to 

ASHRAE Guideline 14 
 

NOT G14 
 



envelope, and changes to base and peak loads. Instead, we hypothesize that the models are being drastically changed by 
the optimization scheme to fit models that need to be configured more accurately before calibration. We think that this 
can be resolved by tighter connection to data sources in the building and we are moving forward to do this.   

CONCLUSION 

Maintenance of large fleets of BEMs for existing buildings requires a continuous cycle of quality checks and 
recalibration to increase model accuracy. In this work, we have taken first steps towards accomplishing this for a fleet 
of 121 BEM that are being used for EISA compliance on a four-year cycle.  The auto-calibration design process has 
been completed and five BEMs have been successfully auto-calibrated with twelve more in process. For our case, the 
auto-calibration process has provided much needed deliverables for EISA 2007 compliance at economically competitive 
rates. Though reduced cost has been demonstrated, the reduced hours of labor required to calibrate models is of greater 
importance for our needs. Initiating the auto-calibration process has also elucidated the need for improvements to our 
data collection processes and methods for maintaining large fleets of BEMs. The quality checking procedure was found 
to be essential and even revealed misinformation in energy audit reports that was corrected, making it valuable beyond 
our application. Though the models for building 2 and building 5 did not achieve ASHRAE Guideline 14 compliance, 
all were drastically improved. For the failed cases, data and modeling accuracy issues are more likely at fault than any 
shortcomings of auto-calibration.  

This work has revealed the need for refinement of many of the energy tracking processes at large institutions across 
our nation. For auto-calibration to be effective, BEM fleets need to be efficiently connected to building automation 
systems. Doing so involves challenges to understand sensor reliability, placement, and data interpretation. Yet, when 
connected thus, auto-calibration will better serve its designed purpose of tuning a model for identification of key 
parameters. Because of the lack of such connections, auto-calibration often may involve fitting models with 
configuration errors to data. The models therefore may need addition of missing systems, reconfiguration of existing 
systems, and corrections to schedule shapes. The drastic changes to parameters needed (Figure 4) for Buildings 2 
through 5 suggest that this was the mode of operation for one or more buildings in this work so far. We plan to correct 
this through richer data connections. As these refinements are made, we expect to be able to open our BEM fleet to 
additional applications such as energy analytics that assist in identification of sudden unexpected changes in operations. 
To do this, auto-calibration will have to be done on a much more frequent basis than every four years. For the accuracy 
we desire out of our BEM’s, we think that a QC/recalibration process must address every model parameter. To do so 
every parameter must be classified into four categories: 1) no changes needed, 2) discoverable by available data, 3) 
undiscoverable by available data, and 4) tuned by auto-calibration. The third category needs to be kept to a minimal set 
and can only be addressed by uncertainty analysis. The distribution of parameters within this classification scheme may 
serve as a basis to evaluate whether a model is likely to be accurate. Significant work is needed to be able to quickly 
classify BEM parameters into these categories. Regardless, our current efforts are a significant improvement over our 
previous practice and demonstrate methods that reduce resources required to maintain large fleets of BEMs. 
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