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1 Abstract

The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily

running complex building energy simulations. These simulations allow both homeowners and experts to determine

building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million

RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the ex-

ploration and identification of features in the data. Since the database contains multiple variables, both categorical

and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through

multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to

handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated

plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques

with several use cases that have helped identify software and parametric simulation issues.

2 Introduction

The U.S. Department of Energy (DOE) aims to reduce U.S. energy consumption and greenhouse gas emissions by

enabling energy efficient technologies to enter the market at speed and scale. Building envelope and equipment

experts use parametric simulation sweeps of building variables in an effort to identify optimal design of devices, select

cost-effective construction, and determine the best measures for buildings. Identifying promising technologies can

lead to tax incentive and loan programs designed to encourage the growth of energy saving devices, materials, and

practices. However, the impact of this large volume of data is limited unless analysis tools are made available to allow
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researchers and administrators to dynamically formulate and fine-tune hypotheses relevant to a question under study.

Using data generated from the Roof Savings Calculator (RSC), published as a free web-based tool, the visualization

system described here is used to explore the multivariate database.

RSC simulation, like any other simulation model, is a numerical approximation of reality. Various uncertainties are

inherent in the modeling process. These may stem from model parameters, numerical solvers, timestep of integration,

and a variety of other factors. To capture a subset of the modeling uncertainties, ensembles of simulations are defined

by systematic perturbations to the set of simulation input variables. The large multitude of variables and the mul-

tivariate nature of the resulting data makes analysis through thorough sampling and visualization a computationally

intensive task.

The use of visual analytics helps in identifying potential flaws in the simulation models, verify existing hypothesis

and uncover interesting features in the data. From a visualization standpoint, the RSC data presents challenges for

producing a rich visualization system. First, the size and scale of the data is a major issue. The RSC database

houses over 3 million simulation runs, each with over 50 input and output variables. Second, the variables themselves

include categorical, numerical, and geospatial components. The visualization system must be able to handle this

wide array of types such that filtering and feature specification can be done in any view. Thus, we present RSC

Explorer, which combines various views into an interactive tool and is the result of a collaborative, cross-disciplinary

partnership between building energy experts and computer scientists. In addition to providing a tool for building

energy specialists to explore their data, we present modifications to parallel coordinate plots (PCP) that combines the

advantages of categorical and numerical visualization techniques and applies them to a large scale problem. Using

RSC Explorer, we examine groups of outliers that represent problems with the simulation code, verify existing data

patterns, and discover potentially novel patterns in the simulation data.

The rest of the paper is organized as follows: we first discuss related work, followed by a section on the RSC

engine and the data being used here. We then provide a detailed description of the RSC Explorer tool followed by an

evaluation of the tool by experts and a discussion of the results. We finally summarize the contributions in a concluding

section.

3 Related Work

The RSC combines DOE-2.1E for whole-building energy simulation with AtticSim for simulation of modern roof and

attic technologies. Both codes have been validated through field experiments and AtticSim is part of ASTM standard

C 1340. This combined source code passes thermal behavior and other physical properties through the boundary of
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the attic floor each timestep of the simulation and acts as the engine of RSC. The web interface provides a simplified

interface with 26 possible inputs but defaults everything to national averages with the exception of nearest U.S. location

of 239 possible weather sources. This allows comparison of a base case and cool roof comparison to determine monthly

changes in heating and cooling energy aggregated to yearly cost. The RSC is available at www.roofcalc.com; for more

information, the interested reader is referred to (New, Miller, Desjarlais, Huang, & Erdem, 2011).

The building energy simulations provide a rich dataset to explore. For the purpose of visualizing multiple variables,

the system takes advantage of parallel coordinates. Parallel coordinates were introduced by Inselberg (Inselberg, 1985;

Inselberg & Dimsdale, 1990) and have been widely used for visualizing relationships among multiple variables. The

data is represented by drawing a vertical or horizontal axis for each data dimension, and then for each data element,

a polyline is drawn to traverse each axis according to its value for that dimension. Many of the advantages, such as

conveying patterns, outliers, and features, are lost when the parallel coordinates are applied to large scientific data.

In order to relieve the limitation on scalability, Fua et. al (Fua, Ward, & Rundensteiner, 1999) conveyed aggregation

information through the use of hierarchical clustering with tools for drilling to individual items within the hierarchy.

Novotny and Hauser (Novotny & Hauser, 2006) addressed the issue of outlier preservation in context visualization

of parallel coordinates by handling outliers and trends separately. The outliers and context are calculated by using a

binned data representation and then mapped to a 2D histogram. Using this technique, they have successfully visualized

data with up to 3 million elements. However, the visualizations described above are made with support exclusively for

numerical data. Special care must be given when integrating and visualizing RSC data which include both numerical

and categorical data. Johansson and Johansson used a multiple view approach to visualizing numerical and categorical

data (Johansson, 2009; Johansson & Johansson, 2010). However, their work uses quantification on categorical data to

allow for numerical approaches to be used.

Drawing from the previous success of linking multiple views to explore data, the system merges new techniques

and existing information visualizations into an interactive system. The interface focuses on the exploration of large

building ensembles based on multi-dimensional inquiry. The drawbacks of individual visualizations are overcome by

combining the features of several techniques together.

4 Simulation Model and Data

The scientists at Oak Ridge National Laboratory (ORNL) are responsible for RSC and are interested in further verify-

ing, validating, and understanding the underlying simulation models. The RSC system diagram shows workflow with

simplified input/output pages can be seen in Figure 2 with each job request constituting 2 simulations, a baseline and
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Figure 2: Roof Savings Calculator (RSC) website system diagram for www.roofcalc.com showing workflow, simula-
tion inputs, RSC engine, and output page.

a comparison. As can be seen, the simulation data used in this study derive from inputs 1-17 which can be broken

up into three categories: building details with location, HVAC efficiency with utility pricing, and roof/attic properties.

For more information, see the pop-up tool tips at roofcalc.com or (New et al., 2011) for more details. An advanced-

mode variable not shown here is window-to-wall ratio for a total of 18 simulation inputs. Outputs are monthly electric

cooling energy (kWh), electric heating energy (kWh), and natural gas heating energy (BTUs), aggregated from hourly

simulation timesteps, for a total of 36 outputs. These 54 fields of data per simulation are stored in a MySQL database

containing over 3 million simulations. A future version of the RSC website uses this database as a cache to provide

immediate results for simulations that have already been run by anyone in the world while dynamically running and

adding new simulations to the database as they are requested (or contributed through parametric sweeps).
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5 RSC Explorer

RSC ensemble simulations produce data that is large and multivariate across both numerical and quantitative data.

A number of visualization techniques are employed in the multiple linked view visual analytics system which we

call RSC Explorer. It was implemented using the C++ programming language and uses the Qt, OpenGL, and Boost

libraries. By using different views, the visualization can be tailored to best represent each aspect of the underlying

simulation parameters. The main focus of the visualization system is the ability to explore input parameters using

parallel coordinates. The time-varying energy usage outputs are rendered using HDR curve plots that preserve outliers,

which is often crucial to the visual analytics process. The categorical and geospatial data is handled using interactive

bar chart and map views, respectively. All of the views are linked together with interactive selection so that data

selected in one view is also highlighted in all other views. A screenshot overview of the system is presented in

Figure 1. The following sections describe each of the features in greater detail.

5.1 Parallel Coordinates

Parallel coordinate plots have been widely used as one of the most intuitive mechanisms for visualizing multivariate

data. There are a few possible mechanisms for handling RSC’s numerical and categorical data. One possibility would

be to completely separate categorical and numerical variables into two different plots, each with its own rendering

style. However, this would limit the ability of mixing and reordering axes to gain possible correlation information

between data types. Another possibility is the mapping of categorical data to a numerical value. However, this would

force the implication of continuity on discrete elements that would cause visualization artifacts that can mislead users.

Instead, the technique described here allows both data types to be rendered in a single plot by combining the strengths

of existing techniques with a few key enhancements.

5.1.1 Data Aggregation

The first issue to address is how to render such a large amount of information interactively. Standard line rendering

approaches cannot handle millions of data items well due to graphical processing requirements which cause very

slow rendering that can break the possibility of interactivity. Another major, yet typical, issue is overplotting where

line-rendering approaches fill a single pixel with the last line color even though that may have 1 line or millions of

lines (of different colors and types) passing through it without any detail to convey that information. Thus, we turn to

frequency-based rendering which aggregates the data to provide an overview of the data with less rendering time.

Along the works of Bendix and Novotny (Bendix, Kosara, & Hauser, 2006; Novotny & Hauser, 2006), we first
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generate a 2D histogram of pairwise frequency data for each pair of adjacent axes and dynamically recompute this

whenever an axis is moved to a new location. This stores the image of the data flow between 2 given axes. Unlike

the previous work, however, our application supports categorical data by allowing non-uniform histogram dimensions.

The bin sizes are determined as either the number of categories for categorical axes or a user specified size (typically

min and max) for numerical data. Figure 3(a) shows an example of the end result from the unified technique, using

color intensity to denote occupancy levels.

5.1.2 Context Rendering

In addition to rendering a line for every simulation, previous frequency-based parallel coordinates have also used

quadrilaterals (quad) to render ribbons of data that were binned together. Also, when a line or quad for data converges

to an axis, there is no guarantee of continuity (i.e. that it will leave the axis at the same point). This makes tracking

flow of data difficult due to hidden discontinuities at every axis. In an effort to ameliorate these concerns, we use

extensions to the rounded edge rendering presented by Mansfield (Mansfield. & Ambachtsheer, 2003) which allows

for smoother angle changes for incoming and outgoing data at each axis.

The way bins are rendered depends on whether the pair of axes is both numerical, both categorical, or a mix. For

pairs of numerical axes, the bins are of equal size since they represent given numerical ranges from one axis to another.

To emphasize the largest data concentrations, bins are ordered based on occupancy and their respective visual elements

are rendered from low to high. Colormaps based on occupancy are also used to help distinguish data bins from one

another. In Figure 3(a), the two axes on the furthest right are both numerical.

For pairs of categorical axes, since categorical data does not have the strict positional requirements inherent in

continuous data, the size and axis positioning of bins can be modified to improve readability. The axis is first split into

its respective categories, providing a visual separate of each. Proportional sizing is allowed to enhance the ability to

see the percentage of incoming and outgoing items for a given bin (much like a bar chart) beyond the standard coloring

technique. Categorical also provides two types of end connections: overlapping and category stacking. Overlapping

bin connections works exactly as described with numerical data, where each bin connects to the top and bottom of its

respective category sub-axes. For category stacking, bin start and end vertices are stacked so one category may have

multiple incoming or outgoing channels of data (that do not overlap). This allows bins to be traced more easily besides

creating a much cleaner visualization. The two left-axes in Figure 3(a) are categorical.

When the pair of axes is mixed, the difference in bin sizes creates a continuity problem since there may be a small

number of categories but a large quantity of numerical values. To allow for a continuous visual flow, the incoming and

outgoing bin sizes for each axis must match. This causes a gradual ballooning effect as the geometry increases from

7



(a)

(b)

Figure 3: By integrating rendering techniques together mixed data can be visualized effectively in one plot (a). When
items are selected, the red focus bins (red) are rendered on top of the green context bins (b).

the smaller to larger side. This can be seen by looking at the middle axes in Figure 3(a).

5.1.3 Focus Rendering

Since the visualization is intended for exploration, focus sets must also be rendered in conjunction with the context.

Between any pair of axes, an aggregate focus object is rendered atop the context bin and sized according to the

percentage of occupancy of focus items, as can be seen in Figure 3(b). Thus, the size of the red connection indicates

the percentage of items from the relevant context bin, regardless of whether the bins are rendering using uniform or

proportional sizing. This allows the user to quickly determine not only when values are connected, but also estimate

how many items are present in that selection for each value pair.
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(a)

(b)

Figure 4: The color and transparency of data can be controlled via a transfer function editor (which determines the
mapping from data space to visual space). The default is coloring based on bin occupancy, shown in (a). The bins may
also be colored by a chosen axis to provide flow of a single variable across the entire visualization, shown in (b).

When using category bin stacking with focus items on top, the disconnect of information flow that occurs on axes

was distracting for some users due to enhanced discontinuity at axis boundaries. Thus, we added focus-merging to

the visualization that joins together individual focus primitives before entering and leaving an axis. Thus, the unified

focus set can be seen as flowing from one category to the next.

Since the exploration process is interactive, care must be taken to ensure the combination of all these features

is fast and that the software does not become unresponsive. This is accomplished using multi-threading where each

thread is assigned a subset of the data items and a pair of axes to handle all required bin recalculation and rendering

operations on-demand.

5.1.4 Interaction

The user is given control over the layout of the axes, the rendering styles, plot coloring and data selection. All of

these operations help in generating an effective visualization and finding features of interest during the exploration
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process. Axis reodering is the most basic operation a user can perform. By simply clicking and dragging an axis with

the mouse, it can be moved to a new location within the PCP. In addition, the controls window allow for size, font, and

primitive styles, such as curves, quad, and line rendering, to be changed on the fly.

The selection of data in the PCP is done using the mouse to create selection boxes by clicking and dragging. Each

rectangle specifies a minimum and maximum data selection for one or more axes at a time to select all data items

within those ranges. The same operation can be done while holding shift to deselect items in the highlighted ranges.

Once a range is specified, the focus set is updated by discovering which items have been touched by the selection

operation. The focus set is updated in a separate multi-threaded process to prevent lag in the system interaction.

The color and transparency for context and focus can be changed independently. The user is able to change the

color through a pair of pop-up transfer function editors which use color wheels. While bin occupancy is used for

coloring, any level of occupancy (from low to high) can be emphasized by the user. In addition, the user can also map

a major axis to color, which will show the distribution of values for that dimension as it flows through all others as

shown in Figure 4.

5.2 Linked Visual Analytics

Though the PCP represents the main analysis tool for researchers to explore their data, specialized visualizations

handling time-varying energy data, categorical distributions, and geographic climate zones have been created to handle

specific types of data. These visualizations are all linked into a single system to allow focus selection and rendering

across all views in real-time, allowing more in depth feature exploration and support for visual analysis.

5.2.1 High-Density Time Plots

Time-series plots are created for line rendering of monthly data for the three output variables (electric cooling, electric

heating, and natural gas heating). Due to the density of the lines, the plot can quickly become oversaturated, causing

patterns to become lost. Thus, high-density rendering is performed using a high-precision element recognized by

modern video cards as a framebuffer object (FBO). The FBO records the number of hits at each pixel location and

a logarithmic function is then applied to color for revealing detail in saturated regions. However, a strict logarithmic

function would hide any outlier details, thus we also emphasis regions below a specific threshold so that uncommon

values are also shown. This is done by restricting the logarithmic opacity modification to high occupancy pixels in the

fragment shader (i.e. shaders are programs computed on the graphics card) to maximize interactivity. Focus lines are

rendered on top of this high-density view with a constant opacity value. An example of the time plots is illustrated in

Figure 5.
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(a)

(b)

Figure 5: Time plots are rendered using high-precision textures and outlier-preserving sampling.

With over 3 million lines to render for each plot, rendering can be quite slow even with GPU acclelerated FBOs,

fragment shaders, and vertex shaders. To overcome this problem, we apply an occupancy-based outlier sampling

method to pick a subset of lines to render for each plot. Between each pair of months along the horizontal axis, lines

are binned based on what region of the vertical axis they pass through. All curves that fall into low occupancy bins are

automatically chosen to be rendered. By default, the threshold for low occupancy is 10% of the total number of lines.

The remaining lines then randomly sampled to provide a distribution of the high traffic areas.
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(a) (b) (c)

Figure 6: The category view presents a series of bar charts for each categorical dimension (a). When hovering over a
particular dimension, coloring is applied to visually separate it from the others (b). When focus items are selected, a
smaller red bar is drawn to show how much of each category is selected (c).

5.2.2 Categorical View

The category view, shown in Figurer̃effig:CatView, is a series of simple, interactive bar charts that allow the users

to quickly determine the distribution of categorical building parameters. Each categorical dimension is given a bar

for every category it contains. The bars are sized base proportionally to the number of data items contained within

that category. The user can simply select and deselect entire categories with the click of a mouse. On mouse over,

individual categories are highlighted to provide visual emphasis. When an item from a category is selected (perhaps

through interaction with other views), a red bar is drawn on top that shows how much of the category is selected.

5.2.3 Map View

A crucial component for building energy simulations is the local climate for each housing structure (e.g. a house in

Alaska has very different energy needs when compared to one in Texas). The user can select and deselect climate

zones directly on a map of the U.S. as shown in Figure 7. A standard web clickmap is used to carve the map into

polygonal regions and the intersection of a mouse click with one of these regions is used to select the corresponding

simulations from that ASHRAE zone. By adjusting the polygonal fill pattern to denser cross patterns, the the user

can approximate how much of that climate zone’s data items are currently selected as a focus. Thus, polygonal fill

represents focus occupancy for that region.
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Figure 7: The map view allows users to select and deselect climate zones.

6 Results and Discussion

This effort is the result of a partnership of building energy simulations researchers and computer scientists. The build-

ing energy simulation experts provided the domain knowledge and expert guidance, and helped to evaluate the tool.

In one session with 2 domain experts, 30 minutes was able to establish several known/expected patterns (hypothesis

testing), 11 potential simulation bugs (through database mining), and 11 new patterns in the data which the domain

experts found interesting and could not explain (knowledge discovery). Only a few of these are selected for discussion

below.

Even before any data filtering was used, the scientists noted some interesting high-level anomalies immediately

when viewing the entire data. By placing the ’Roof Type’ next to ’Duct Location’ it was noted that three of the com-

mercial roof types (concrete, PVC, and built up roof) did not connect to the attic category on the parallel coordinates

plot. It was found that this indicated a lack of coverage in the parametric simulations in the database since these

commercial types were simulated using only a plenum and no attic space. In addition, by examining the bar charts in

the category view, there was apparent bias toward modeling certain climate zone regions and building types. Namely,

a vast majority of the building simulations are for residential homes, with only a few for offices and warehouses

(indicating in part that most people who use the website are homeowners).

The first point of interest was discovering the causes of outliers in the energy signatures that are present in the
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(a)

(b)

Figure 8: Outliers are selected on the electrical cooling (a) and electrical heating (b) time plot. In both cases, the focus
items share the same foundation type (box) as seen in the PCP. These simulation errors were thus easily tracked to a
bug in a building template file, even though these errors existed in only 8 of over 3 million simulations.

function plots. By brushing these outlying lines directly, the focus switches in all of the coordinated views. As a sanity

check, Figure 8(a) shows outliers selected from the cooling energy which verifies that the no energy is being used for

cooling in ASHRAE climate zone 8, as shown by the lack of red lines in leftmost axis of the PCP. In Figure 8(b),

interesting outliers were selected in the HDR line plot which show more use of energy for heating in the summer

months than in the winter months (which doesn’t make sense). As expected, the extreme heating values occur in the

coldest three climate zones, but the outliers also occur in climate zone 1. Furthermore, the 3rd axis from the left shows

all outliers pass through the “box” building type. This corresponds to a DOE-2 building template file and indeed an

error in the macro of the building description language (BDL) for this file was detected and corrected. In only a few

minutes, domain experts that had never used this visualization technique before happened to identify an error in the
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(a)

(b)

Figure 9: The images shown here have focused on zone 2 (a) and zone 6 (b). Due to their location differences, the
housing parameters and heating/cooling needs are different between the two feature sets.

complex RSC simulation system in 8 simulations out of over 3 million.

From the parallel coordinates plot, the researchers noticed that when the floor area was paired with the number of

stories, that a bin was present which indicated some of the simulated buildings were 10 stories tall but only 400 square

feet in area (a 6′×6′ building). By selecting this bin, it shows that this only occurs for the office building type. Since

their building simulation model is not intended to model the heating and cooling of elevator shafts, it was discovered

that a minimum building size needs to be enforced to eliminate invalid building types.

Another aspect of the RSC data set that is of interest to building scientists is verifying model parameters over dif-

ferent climate zones. In Figure 9, two different climate zones, 2 and 6, are have been made the focus of RSC Explorer.

The focus rendering technique developed for the parallel coordinates plot allows the researchers to quickly asses the
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proportion of data items traveling between axes. Zone 2, shown in Figure 9(a), contains many more simulation runs

than are present in zone 6. One interesting aspect separates the two zones on the second dimension, foundation type.

Namely, zone 2 buildings exclusively have slab foundations while zone 6 buildings exclusively have basement foun-

dations. This is related to the building standards and codes for these two zones. Furthermore, the difference in climate

between these two zones causes different energy signatures to be seen in the energy function plots. As is seen in

Figure 9(b), Zone 6, which is located further north, uses much more electricity and gas for heating during the winter

season. On the other hand, zone 2 has higher energy usage for cooling during all of the months of the year. Since

zone 2 contains some of the warmest parts of the country this behavior confirms what is expected from the simulation

model.

The researchers also gave valuable feedback for some shortcomings that could be addressed to help improve RSC

Explorer. First, while manual ordering of axes is available, it would be beneficial to the user to provide an initial

ordering that avoided bad combinations. This comment was in response to some numerical axis pairs, such as HVAC

efficiencies, being so evenly connected that no visible trend was present. Second, the focus rendering is still difficult to

follow at times for categorical axes due to the disconnect that can occur as a result of bin stacking. Third, the inability

to perform PCP axis-specific zooming for ranges of interest was seen as limiting. Finally, the researchers appreciated

the category view with bar charts as it was provided clean indication of categories selected; however, they noted that

the linear scale used caused small categories to be too small, thus limiting their usefulness.

The tool has been designed in a way that allows it to run on desktop computers as well as large, wall-sized

displays. We have been able to conduct some of the analysis in the 35 million pixel EVEREST powerwall as well

as the 16 million pixel TRAVL display wall at the Oak Ridge National Laboratory (figure 10). The large size and

much higher resolution allowed experts to immediately pick up features that were difficult to perceive on conventional

desktops.

7 Conclusion

This paper has presented a multiview visual analytics system called RSC Explorer, which combines parallel coordi-

nates, function plots, bar charts and map views together for visualizing numerical and categorical data. In order to

allow interactive exploration of over 3 million simulations, many technical contributions were made to visualization

techniques of which only a few have been discussed in this paper. Most importantly, we created a frequency-based

parallel coordinates plot that is able to handle large scale data and provides a rendering style for pairs of axes. In

addition, rounded bin rendering was used to alleviate aliasing and shrinking problems that are inherent in the standard
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Figure 10: ORNL researchers exploring the result of RSC ensemble simulations on the 16 million pixel TRAVL
display wall.

quad-based rendering techniques. Coupling this versatile parallel coordinates plot with other plots provides a well

rounded system for integrated exploration. Although applicable to any large scale numerical or categorical data, build-

ing scientists have been able to quickly visualize and analyze millions of simulations in an interactive fashion, verify

proper visualization of known trends, query the data intuitively to test working hypotheses, and to quickly identify

complex errors that would normally be buried in such large data.
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