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ABSTRACT 

 
Simulation plays a big role in understanding the behavior of building envelopes. With the increasing availability of 
computational resources, it is feasible to conduct parametric simulations for applications such as software model 
calibration, building control optimization, or fault detection and diagnostics. In this paper, we present an uncertainty 
exploration of two types of buildings: a) of a building envelope’s thermal conductivity properties for a heavily 
instrumented residential building involving more than 200 sensors, and b) a sensitivity analysis of a stand-alone 
retail building from the U.S. Department of Energy’s reference model.  A total of 156 input parameters were 
determined to be important by experts which were then varied using a Markov Order process for the residential 
building generating hundreds of GBs of data for tens of thousands of simulations. For the commercial building, 20 
parameters were varied using a fractional factorial design requiring just 1024 simulations generating data in the 
order of a few hundred megabytes. These represent a wide variety and range of simulations from a few to tens of 
thousands of simulations in an ensemble. 
 
Depending on the number of simulations in an ensemble, the techniques employed to meaningfully make sense of 
the information can be very different, and potentially challenging. Additionally, the method of analysis almost 
always depends on the experimental design. The Markov Order sampling strategy and fractional factorials designs 
of sampling presented represent two approaches one could employ for large sensitivity analysis of buildings at two 
different scales of simulations. The paper presents the analysis using descriptive statistics as well as employing 
multiple analysis of variance techniques for comparison and contrast. 
 

1. INTRODUCTION 
 
There are many use cases that leverage software simulations to quantify changes to building behavior. For an 
individual homeowner or building portfolio manager, simulation is often used to apply dozens or hundreds of energy 
conservation measures (ECMs) to a (set of) building(s) and determine the optimal return on investment. This use 
case is employed by several governmental agencies such as the Office of Weatherization and Intergovernmental 
Programs (OWIP) for low-income housing, Federal Energy Management Program (FEMP) for federal facilities, and 
the $5 billion energy service company (ESCO) market which often profit primarily by sharing in weather-
normalized energy savings over time. For legal tradeoffs, such as those in building codes or taxes, simulation is used 
to allow flexibility in the way a building is constructed and still meet minimum energy efficiency requirements as 
well as determine the best ways to increase the energy efficiency of building codes when they are updated. For 
incentives such as those from local utilities, state governments, or federal policies, simulation is often used to 
determine eligibility; many incentives can be found in tools online such as the Database for State Incentives for 
Renewable Energy (DSIRE). For national energy reduction, organizations such as the Department of Energy (DOE) 
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have been tasked by the U.S. President with aggressive goals to reduce energy waste from buildings 50% by 2030 
(compared to a 2010 baseline). DOE relies on simulation and other analysis to optimize policy selection, determine 
and prioritize funding for high impact technologies (HITs) that enable actualized energy savings, and is used 
extensively to model, optimize performance, and integrate individual building components (envelope, equipment, 
etc.). 

There are many simulation engines and software tools, which leverage these simulation engines that have made it 
easier than ever to run complex analysis. Some of these engines and tools are highly specialized and seek only to 
optimize a constrained set of high-fidelity physics to enable optimization and creation of specific types of roofs, 
HVAC equipment, etc. However, many of these specialized algorithms have been developed within or absorbed by 
well-known engines and tools in order to maximize their utility for energy-efficiency experts. Within the context of 
the Department of Energy, a whole-building simulation engine known as DOE-2.1E was first released in 1993 and is 
now up to DOE-2.3 that can run an annual building energy simulation in seconds and is still widely used by many 
experts through tools such as eQuest which allows one to run groups of simulations. In 2001, DOE was beta-testing 
a whole-building simulation engine known as EnergyPlus that was released later in the same year –and has 
continued to grow given DOE’s steady investment in its development. The typical runtime of EnergyPlus is on the 
order of a few minutes to run an annual simulation and this is one of the major issues that have limited its adoption. 
It is, however, in widespread use today and contains many of the most recent building dynamic simulation 
algorithms. Many algorithms of varying fidelity exist for modeling certain phenomena within the simulation engine 
allowing the user to define the tradeoff between more accurate simulations and longer runtime. EnergyPlus consists 
of ~600,000 lines of Fortran code and has recently been cross-compiled to ~750,000 lines of C for transitioning to a 
Modelica-based architecture currently being referred to as the Son of EnergyPlus (SOEP).  

In 2009, DOE released OpenStudio, which has evolved to become the primary Application Programming Interface 
(API) for EnergyPlus. It contains many tools, such as the Parametric Analysis Tool (PAT), for applying measures to 
buildings and producing analytical reports. While the usefulness of longer-running EnergyPlus simulation has been 
mitigated for deployment on the desktop, OpenStudio now supports the use of cloud computing; this allows anyone 
in the world to run large-scale simulations and analysis, without the need for servers or supercomputers, at the cost 
of current cloud computing resources. A large proportion of DOE’s investment in building energy simulation and 
software tools is captured in EnergyPlus and OpenStudio. There are many other building tools beyond the scope of 
this paper; for a comparison of engine and tool capabilities, the interested reader should refer to Crawley, 2008. 
 
As computing resources and economically feasible large-scale analysis become more prevalent, there is an 
increasing need to develop simulation analysis that can scale to the number of cores available. In addition, methods 
are needed for dealing practical issues such as simulation failures when sampling the combinatorially large 
parametric space of input parameters. While most modern software tests for valid ranges of inputs for the simulation 
engine using regression tests or for an individual module with unit tests, virtually no software addresses how a set of 
parameters in a valid range may cause the software to crash or give unrealistic results when used in different 
combinations. With respect to EnergyPlus, a standard input file to describe a building has on the order of 3,000 
inputs. We’ve had domain experts pick out the most important parameters that affect building energy consumption 
and meaningfully discretize values for those parameters. The most important group consisted of 156 input 
parameters and yielded a combination of 5x1052 simulations that would be necessary to brute-force every 
combination. Even if the Department of Energy wished to document input combination that were not viable, the 
computation time to find the non-linear boundaries of what constituted safe system state would be a tremendous 
challenge; to say nothing of the challenge for documenting such boundaries. While this may be an extreme case, a 
more common scenario is when a user runs multiple simulations while tweaking individual parameters, which often 
results in waiting for failed simulations. For this reason, we have elected to analyze a realistic use case in which 
naïve parameter selections cause multiple groups of simulations to fail and then compare the analysis when domain 
experts go back to fix the failed simulations. 
 

2. STATISTICAL TECHNIQUES FOR SENSITIVITY ANALYSIS 
 
2.1 Experimental Design 
In statistical design of experiments, input parameters of a multivariate function under study are called factors and 
output parameters are called responses. The objective of a designed experiment is to measure the effect sizes of 
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factors and their interactions on a response through an additive decomposition of the multivariate response function. 
When many possible factors need to be screened for their influence on a response, two-level fractional factorial 
designs are popular. In general, for k factors at two levels each, there are 2k possible factor combinations. Fractional 
factorial designs allow the use of a small fraction of this large number by carefully controlling the pattern of factor 
and interaction effect aliasing (see, for example, Mee, 2009). In this study, we have 20 factors and we use a 
resolution VI design, resulting in 1024 runs. Resolution VI designs alias main effects (single factors) with order five 
or higher interactions and alias two-factor interactions with order four or higher interactions. We generate the design 
with the R package FrF2 (Ulrike Grömping, 2014). 
 
2.2 Sensitivity Analysis 
The analysis of variance of a resolution VI fractional factorial design can be done with a model that contains all 
main effects and all two-factor interactions. Each of the 1024 experimentally configured buildings is simulated over 
a period of one year and we use the 12 monthly totals in our analysis. We use the 12 measurements in a repeated 
measures multivariate analysis (Hand and Taylor, 1987) with R software (R Development Core Team, 2014). This 
traditional multivariate approach to repeated measures data is considered more powerful than treating each month as 
a separate analysis of variance. Within the buildings domain, many of the motivations, history, and state-of-the-art 
approaches for sensitivity analysis (reducing the number of simulations necessary, optimization methods, etc.) are 
expertly consolidated in ASHRAE report 1051-RP (Reddy, 2006). 
 

3. EXPERIMENTAL SETUP OF SIMULATIONS 
 
3.1 ZEBRAlliance Homes and Markov Order Design 
Measured data was used from the first house from a set of 4 residential buildings known as the ZEBRAlliance 
(Miller, 2012). This 2800 ft2 research home collected 269 channels of 15-minute sensor data during the 2010 
calendar year (Biswas, 2012). The reference building used in this work is house number 1 in the Wolf Creek 
subdivision (WC1), an Oak Ridge National Labs ZEBRAlliance experimental energy efficient home. This home has 
a plethora of energy-efficient technologies: (1) standing seam metal roof with infrared reflective pigments to boost 
solar reflectance, (2) ENERGY STAR appliances, (3) triple-pane low emittance Argon-filled windows, (4) compact 
fluorescent lighting, (5) horizontal ground loop installation that leverages foundation and utility excavations, (6) 
high-efficiency water-to-air heat pump for space conditioning, (7) high-efficiency water-to-water heat pump for hot 
water heating, (8) an energy recovery ventilator for transferring heat and moisture between fresh incoming and 
outgoing air, and (9) structurally insulated panel (SIP) walls filled with expanded polystyrene insulation. All four 
buildings used emulated occupancy, running the exact same schedule of plug loads, lighting, and hot water draws in 
the buildings in order to remove the confounding variable of behavior-based variability typically encountered in 
occupied building comparisons. 
 
After constructing an EnergyPlus model of this building, domain experts identified 156 of the model inputs that they 
considered the most important variables for sensitivity analysis. A minimum, maximum, and default value were 
selected for each of these parameters along with a physically-meaningful step size (serving to discretize the search 
space). From the 269 channels of measured data, 96 outputs were found which corresponded to something 
EnergyPlus could report. In order to conserve space, the 96 outputs and 156 inputs used have been made available at 
http://bit.ly/autotune_res_params. 
 
There were three main sampling methods used to vary the input parameters. 
1. Brute Force – 14 of the 156 building input parameters were selected for brute-force calculation of all 

combinations of minimum and maximum sizes. This fine-grained (FG) dataset contains approximately 12,000 
EnergyPlus simulation results and is approximately 143GB. 

2. Markov Order 1 – all 156 parameters were kept at their default value while iterating through each parameter to set 
it at its extremes. This has the ability of showing the swing in outputs as a function of a single parameter going 
from its minimum to its maximum value. This dataset contains 299 simulations and is 3.9GB. 

3. Markov Order 2 – all 156 choose 2 pairings were run in all possible min/max configurations (min/min, min/max, 
max/min, max/max). This overcomes the limitation of Markov Order 1 in that interplay between any pair of 
variables could be ascertained. This dataset contains approximately 28,000 EnergyPlus simulation results and is 
approximately 450GB. 
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3.2 DOE’s Reference Stand-Alone Retail and Fractional Factorial Design 
DOE has defined a set of 16 commercial reference buildings (Deru, 2011) and 3 vintages for each of the 16 
ASHRAE climate zones. These models are used by the building energy modeling community since they directly 
characterize 60% of the commercial buildings found in the U.S. building stock and are similar to the remaining 
types. The stand-alone retail building is one of the most prevalent and is thus used in this study for applying 
sampling and sensitivity analysis techniques to a more tractable set of input parameters. A domain expert selected 
what were believed to be the most common variables for a retail building and assigned minimum, maximum, and 
default values for each of them. 
 
Table 1. Twenty inputs and ranges sampled to generate two sets of 1,024 simulations for sensitivity analysis. 

Class Name Short 
Name 

Field Default Min Max 

Schedule: 
Compact 

CLGSETP_SCH SC_CL6 Field 6 23 16.1 29.9 
HTGSETP_SCH SC_HT4 Field 4 16 11.2 20.8 
HTGSETP_SCH SC_HT6 Field 6 22 15.4 28.6 

 Back_Space_Lights Li_BaSp Watts per Zone 
Floor Area 

9 6.3 11.7 

 Core_Retail_Lights Li_CoRt Watts per Zone 
Floor Area 

18.5 12.95 24.05 

Lights Front_Entry_Lights Li_FrEn Watts per Zone 
Floor Area 

12 8.4 15.6 

 Front_Retail_Lights Li_FrRt Watts per Zone 
Floor Area 

18.5 12.95 24.05 

 Point_Of_Sale_Lights Li_POS Watts per Zone 
Floor Area 

18.5 12.95 24.05 

Electric 
Equipment 

BackSpace_MiscPlug Eq_BaSp Watts per Zone 
Floor Area 

8.2 5.74 10.66 

CoreRetail_MiscPlug Eq_CoRt Watts per Zone 
Floor Area 

3.3 2.31 4.29 

FrontRetail_MiscPlug Eq_FrRt Watts per Zone 
Floor Area 

3.3 2.31 4.29 

PointOfSale_MiscPlug Eq_POS Watts per Zone 
Floor Area 

22 15.4 28.6 

 Back_Space_Infil ZF_BaSp Flow per Ext  
Surface Area 

0.00033 0.00023
1 

0.000429 

 Front_Entry_Infil ZF_FrEn Air Changes 
per Hour 

1.1 0.77 1.43 

ZoneInfil: 
FlowRate 

Front_Entry_Infil ZF_FrRtA Constant Term 
Coefficient 

0 0 1 

 Front_Retail_Infil ZF_FrRtC Flow per Ext  
Surface Area 

0.00033 0.00023
1 

0.000429 

 Point_Of_Sale_Infil ZF_POS Flow per Ext  
Surface Area 

0.00033 0.00023
1 

0.000429 

DsgnSpec: 
OutdrAir 

SZ DSOA 
Back_Space 

DS_BaSp Outdr Airflow 
per Area 

0.0008 0.00056 0.00104 

SZ DSOA Core_Retail DS_CoRt Outdr Airflow 
per Area 

0.00175 0.00122
5 

0.002275 

Sizing: 
Parameters 

Sizing:Parameters Sz_Heat Heating Sizing 
Factor 

1.25 0.875 1.625 

 
We define a set of 1,024 simulations using a fractional factorials design sampling where each simulation is defined 
by the min or max value of each input parameter. The parameter ranges shown here were selected to demonstrate an 
obvious simulation failure condition in cases where heating setpoint is above cooling setpoint, which happens on 
384 (37.5%) of the simulations. This causes EnergyPlus to exit with a severe error “DualSetPointWithDeadBand: 
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Effective heating set-point higher than effective cooling set-point - increase deadband if using unmixed air model.” 
It should be noted that simulation failures from specific input combinations are often much more difficult to 
understand and challenging to anticipate. Even when such combinations are apparent, placing additional rules to 
sample within the safe state space of input combinations can break some of the statistical advantages of popular 
sampling methods for experimental design. We demonstrate this by forcing overlapping setpoints to their non-
overlapping defaults; this defines a 2nd set of 1,024 simulations with no missing simulation outputs. This comes at 
the expense of changing the multi-dimensional uniformity of fractional factorials sampling. The impact of this 
modification will be shown in the resulting analysis. 
 
3.3 Supercomputing 
The number of simulations resulting from all the different types of sampling strategies presented above is fairly 
large. Several supercomputing systems were used for running the simulations and some o the subsequent analysis to 
tractably execute the simulations in a fair amount of time. The systems included Jaguar/Titan (the fastest 
supercomputer in the world at the time), Nautilus from the Joint Institute for Computational Sciences, the Oak Ridge 
Institutional Clusters, and several other supercomputers.  For the residential building parameters, a portion of 
Markov Order 3 simulations were run, but the combinatorial complexity made this intractable to run even with high 
performance computing resources. The described residential simulations, in addition to simulations of the 3 most 
popular commercial building types (warehouse, retail, medium office), were calculated and used for multiple data-
mining experiments. The Autotune project (Garrett, 2013), in an effort to promote open science, has made a portion 
of the final 267TB (26.9 trillion data points) of ~8 million E+ simulations data publicly available at 
http://rsc.ornl.gov/autotune. 
 
One of the challenges in using large supercomputing resources was that EnergyPlus is an inherently input-output 
(I/O) bound simulation engine. While this is not relevant for desktop computing environments, running large 
batteries of simulations on supercomputing resources greatly increases the number of I/O operations and becomes 
the biggest bottleneck in the computation. The use of memory mapped file systems local to individual nodes in the 
supercomputing cluster greatly helped in mitigating the performance issues allowing production level scalability to 
over 130,000 processors (Sanyal, 2014).  To further improve the I/O performance, batches of files were compressed 
to a single archive. This was done on both the input and the output side, which were then extracted to their target 
locations. Some of the simulated output was inserted to a MySQL database and setup for querying. The overheads of 
importing into a database are significant when the number of simulations is large. A large fraction of the simulations 
were organized into a directory hierarchy determined by simulation type, location, and vintage, and saved as simple 
flat files. One of the benefits of using statistically designed ensembles is a sharp reduction in I/O requirements. 
 

4. ANALYSIS 
 
4.1 Sensitivity Analysis of ZEBRAlliance Simulation Outputs 
To observe the relative change of different outputs and be able to contrast between them, all data ranges were 
normalized between 0 and 1 and plotted together for comparison. Figure 1 illustrates the sensitivities of all 82 
outputs for an ensemble of annual simulations with their normalized means and standard deviations. It is easy to 
perceive the relative change in the outputs and the parameter combination can be easily looked up. 
 
4.2 Input Parameter Sensitivity Analysis for Total Electricity and Gas Use 
The full 2nd set of 1,024 simulations, where some set-points were adjusted to sample within the safe state space, is 
used here with minimal impact on results as discussed in the following section. We fit a multivariate analysis of 
variance model, treating the months as repeated measures as we discussed earlier. With 20 factors and all 2-way 
interactions model fit to 1024 observations, we still have 778 degrees of freedom left for the error term. The 
multivariate Pillai statistic gives strong significance (below 0.0001) to all factors with the exception of Li_FrEn, 
ZF_FrEn, and ZF_RtA, which are above 0.5. Among the 380 possible 2-way interactions, 58 are significant at the 
0.01 level. While significance indicates sufficient data to measure a non-zero effect (that is, it confirms that we can 
measure it with our experiment), the actual size of the effect is ultimately what is important. In Figure 2 we show the 
terms with an effect (coefficient) of over 1,000 KWh energy for Electricity in at least one month. Similarly, we 
show terms with over 1,000KWh effect (coefficient) for Gas in Figure 3. The factors are labeled with the Short 
Name, followed by its upper setting. For example, SC_CL6_29.9 is the additive effect (in each month) of the 
SC_CL6 factor at its 29.9 setting on energy use when all other factors are at their reference setting (lower limit). 

http://rsc.ornl.gov/autotune
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Figure 1. Summary of normalized means and standard deviations for all Markov Order 1 
annual simulation outputs. 
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As one would expect, a higher thermostat setting on SC_CL6 (cooling) reduces electricity use. We get more 
reduction in the summer (bluish points) than in the winter (reddish points). Sz_Heat has a positive effect on 
electricity use but its interaction with SC_CL6 is negative, indicating that higher thermostat settings reduce the cost 
of a larger Sz_Heat. Figure 3 shows the corresponding result for Gas. In Gas energy use, it is notable that the 
“(Intercept)” is missing among the larger effects. This is due to the parameterization and the use of lower levels as 
the reference for higher levels. Lower reference levels for Gas are very low (or zero) as Gas is used for heating only. 
This is also reflected in the fact that all main effects are positive, meaning that higher thermostat settings lead to 
higher energy use.  

 

 
Figure 2: Factors with largest effects on electricity use. Note the different scales on the bottom plot that would place 
it in a very narrow range on the top plot. Coefficients are electricity use in KWh. 
 
To illustrate how a fractional factorial data set provides estimates for many settings, we include graphs of estimated 
monthly mean effect for each factor level with uncertainty in Figure 4. Here, the reference level is the average of the 
response at the two settings for each factor. This provides a visualization of effects across months of the year. As 
can be seen from the effect sizes in Figures 2 and 3, some factors have an effect that is one or more orders of 
magnitude larger than the rest. As a result, we only provide plots for factors where there is a visual difference 
between the two settings. The same data points are shown in each pair of graphs colored by the levels of a factor. 
The first two pairs are for the factors with adjusted set-points, resulting in three levels. The estimated line for each 
factor includes 95 percent uncertainty bounds. Note that each graph contains two lines (three lines in the first two 
pairs), one for each level of the factor. This illustrates how the effect of each factor can be a simple average because 
all other factors are balanced. We discuss sensitivity to the adjusted set-points in the next section. 
 
4.3 Sensitivity to Missing Data and Adjusted Set-Points 
To address the difference between a clean two-level fractional factorial sample and our data that contained a number 
of adjusted set-points, we repeated our analysis with those middle settings removed (i.e. missing). This reduces the 
data to 640, down from 1024. We found that the top main effect and interaction effect estimates (illustrated in 
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Figures 2 and 3) were minimally affected except that some interactions with them were not estimable. There is 
enough other data to still have good estimates of the decomposed effects.  

 
Figure 3: Factors with largest effects on gas use. Note the different scale on the bottom plot that would place it in a 
very narrow range on the top plot. Coefficients are Gas use in KWh. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
In conclusion, we have used three samplings of 156 input parameters for a residential building and shown the impact 
on a subset of the full 96 EnergyPlus outputs. In addition, we used 20 input parameters on the stand-alone retail 
reference building to show the limitations and impact of standard experimental designs like fractional factorials on 
sensitivity results derived from standard analysis of variance techniques. These results should not be extrapolated to 
all residential or medium office buildings and are shown only to illustrate the impact of sampling methods and 
practical limitations on the resulting analysis. In addition, we expect the sampling and ensemble analysis at various 
scales to help us gain insight into unique issues of building energy modeling, especially at different scales of 
simulation. We also expect the analytic approaches employed for understanding the thermal properties of building 
envelopes to be beneficial for software calibration and building design. 
 
In future work, we plan to implement in-situ analysis (where the analysis runs on the same resources at the 
simulation) for large-scale simulation data on high performance computing to mitigate I/O bottlenecks. A 
simulation-agnostic framework has already been established for running hundreds of thousands of individual 
simulations in parallel. Instead of writing simulation results to disk and later analyzing, we plan to use in-situ 
methods to perform the analysis while the result files are still in RAMDisk (a portion of RAM which functions as a 
traditional disk/path but operates at 10-20x traditional disk speed). We will use the pbdR (Programming with Big 
Data in R: http://r-pbd.org/) framework to develop tightly coupled in-situ analysis. Scaling in-situ analysis methods 
with simulation code, balancing simulation and analysis workload and effective use of resource co-located with the 
simulation will be critical challenges. When the analysis is complete, only the necessary results can be written to 

http://r-pbd.org/
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disk, foregoing long disk write times (~45 minutes for 45TB of simulation data generated in a production-quality 
23-minute job on Titan). This is easily scalable for analysis such as finding the absolute minimum or maximum of 
 

 
 
 
Figure 4:  Data plots for monthly Electric and Gas energy use for factors with visually noticeable effect  
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an output variable, since global extrema (impact to an output variable) can easily be computed from several local 
lists of extrema. However, a remaining challenge of mining big data is that while ANOVA and similar analyses can 
trivially be performed on individual blocks of simulations within each node, as demonstrated in this study, merging 
analysis from multiple sets of simulations across all compute nodes can be challenging for many types of analysis. 
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